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Introduction

Content

This manuscript is based on several lectures about Nanomagnetism. Parts
have been given at the European School on Magnetism, IEEE Magnetics Society
Summer School, the Ecole Doctorale de Physique de Grenoble, the Master-2
Nanoscience and Nanotechnology in Grenoble, and in Master-2 lectures at the
Cadi Ayyad University in Marrakech.

Nanomagnetism may be defined as the branch of magnetism dealing with
low-dimension systems and/or systems with small dimensions. Such systems
may display behaviors different from those in the bulk, pertaining to magnetic
ordering, magnetic domains, magnetization reversal etc. These notes are mainly
devoted to these aspects, with an emphasis on magnetic domains and magneti-
zation reversal.

Spintronics, i.e. the physics linking magnetism and electrical transport such
as magnetoresistance, is only partly and phenomenologically mentioned here.
We will consider those cases where spin-polarized currents influence magnetism,
however not when magnetism influences the electronic transport.

This manuscript is only an introduction to Nanomagnetism, and also sticking
to a classical and phenomenological descriptions of magnetism. It targets begin-
ners in the field, who need to use basics of Nanomagnetism in their research.
Thus the explanations aim at remaining understandable by a large scope of
physicists, while staying close to the state-of-the art for the most advanced or
recent topics.

Every chapter is followed by a series of questions and problems. There is
first a series of self-testing questions. These are of use to test your understanding
of the basic concepts of the chapter. No calculation nor analysis is needed.
Second is a series of Short questions. These generally require a bit of thinking
and possibly calculation. There both test your understanding of the chapter,
and possibly extend the concepts described in the chapter. Finally, a series of
problems is proposed. A problem tackles a focused topic, being an application of
the concepts covered by the chapter. is consists of a structured list of questions,
whose coverage may require typically one hour of work. Many of them were part
of Master exams.


http://magnetism.eu
http://ieeemagnetics.org
http://ieeemagnetics.org
http://physique-eea.ujf-grenoble.fr/DOCT/
http://physique-eea.ujf-grenoble.fr/MasterNano/
http://physique-eea.ujf-grenoble.fr/MasterNano/
http://www.ucam.ac.ma/
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Finally, these notes are never intended to be in a final form, and are thus
by nature imperfect. The reader should not hesitate to report errors or
make suggestions about topics to improve or extend further. A consequence
is that it is probably unwise to print this document. Its use as an electronic file is
anyhow preferable to benefit from the included links within the file. At present
only chapters | and Il are more or less completed.

It is my pleasure to acknowledge comments on the manuscript from Alberto
GUIMARAES. Several students also contributed to track mistakes and suggest im-
provements, especially Michal STANO, Alexis WARTELLE, llja RAUSCH, Rafael MESTRE
CAsTILLO, David WANDER. Valuable information and feedback was also provided
by Hélene BEA, Ursula EBELS, Daria GUSAKOVA, Jean-Christophe TOUSSAINT, Jan
VOGEL.

| welcome all future comments to contribute to the improvement of these
notes.

Notations

As a general rule, the following typographic rules will be applied to variables:

Characters

* A microscopic extensive or intensive quantity appears as slanted uppercase
or Greek letter, such as H for the magnitude of magnetic field, £ for a density
of energy expressed inJ/m3, p for a density.

+ An extensive quantity integrated over an entire system appears as hand-
written uppercase. A density of energy E integrated over space will thus be
written &, and expressed in J.

* A microscopic quantity expressed in a dimensionless system appears as a
handwritten lowercase, such as e for an energy or h for a magnetic field nor-
malized to a reference value. Greek letters will be used for dimensionless
versions of integrated quantities, such as ¢ for a total energy.

+ Lengths and angles will appear as lower case roman or Greek letters, such
as x for alength or a for an angle. If needed, a specific notation is introduced
for dimensionless lengths.

+ Avector appears as bold upright, with no arrow. Vectors may be lowercase,
uppercase, handwritten or Greek, consistent with the above rules. We wiill
thus write H for a magnetic field, h its dimensionless counterpart, M or n a
magnetic moment.

» The unit vector linked with coordinate i will be written: i. For example, the

set of unit vectors in cartesian coordinates is (X, ¥, Z). The set of unit vectors
in spherical coordinates is (7, 9, ®). A unit vector tangent to a curve will be


http://www.cbpf.br/~apguima/
http://www.cbpf.br/~apguima/
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written £. A unit vector normal to a curve or a surface will be written A.

Mathematics

+ The dot product of two vectors A and B is written A - B.
« The cross product of two vectors A and B is written A x B.
+ The curl of a vector field V x A is written curl A.

« Einstein notation (implicit summation): n;u; is a shortcut for > nju;
i
* i is the imaginary number such that exp (ir) = —1

« The elementary integration volume and surface elements are written dV
and d§, respectively.

« 0 means a boundary. For example, while V is a volume, 9V is the surface
bounding V.

« A dotted quantity is shortcut for its time derivative: m = dm/dt.
* Functions

cosh x = ([exp(x) + exp(—x)]/2 the hyperbolic cosine
sinh x = ([exp(x) — exp(—x)]/2 the hyperbolic sine
tanh x = sinh x/ cosh x the hyperbolic tangent

coth x = cosh x/ sinh x the hyperbolic cotangent

L(x) = cothx — 1/x is the Langevin function
- B,/, = tanh is the Brillouin 1/2 function

Units

* The International system of units (SI) will be used for numerical values.
Notations should conform to the recommendations of the Bureau Interna-
tional des Poids et Mesures (BIPM).

« B will be called magnetic induction, H magnetic field, and M magnetization.
We will often use the name magnetic field in place of B when no confusion
exists, i.e. in the absence of magnetization (in vacuum). This is a shortcut
for B/ 1., to be expressed in Teslas.

Special formatting

Special formatting is used to draw the attention of the reader to certains aspects,
as illustrated below.

Words highlighted like this are of special importance, either in the local
context, or when they are important concepts introduced for the first time.


http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/

SPECIAL FORMATTING

{3?, The hand sign will be associated with hand-wavy arguments and take-
away messages.

The slippery sign will be associated with misleading aspects and fine
points.




Chapter |

Setting the ground for
nanomagnetism

Overview

A thorough introduction to Magnetism[1-3] and Micromagnetism and Nanomagnet-
ism[4-7] may be sought in dedicated books. This chapter only serves as an introduc-
tion to the lecture, and it is not comprehensive. We only provide general reminders
about magnetism, micromagnetism, and of some characterization techniques useful
for magnetic films and nanostructures.

10
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1 Magnetic fields and magnetic materials

1.1 Magnetic fields

Electromagnetism is described by the four Maxwell equations. Let us consider
the simple case of stationary equations. Magnetic induction B then obeys two
equations:

curlB
divB

fo] (1.1)
o] (1.2)

j being a volume density of electrical current. j appears as a source of induction
loops, similar to electrostatics where the density of electric charge p is the source
of radial electric field E. Let us first consider the simplest case for an electric
current, that of an infinite linear wire with total current /. We shall use cylindrical
coordinates. Any plane comprising the wire is a symmetry element for the
current and thus an antisymmetric element for the resulting induction (see above
equations), which thus is purely orthoradial and described by the component By
only. In addition the system is invariant by rotation around and translation along
the wire, so that By depends neither on # nor z, however solely on the distance r to
the wire. Applying Stokes theorem to an orthoradial loop with radius r (Figure 1.1)

readily leads to: /
_ Ho
By(r) = e (1.3)
This is the so-called Ersted induction or (Ersted field, named after its discovery
in 1820 by Hans-Christian (ERSTED. This discovery was the first evidence of the
connection of electricity and magnetism, and is therefore a foundation for the
development of electromagnetism. Notice the variation with 1/r. Let us consider
an order of magnitude for daily life figures. For / = 1A and r = 107>m we find
B =2 x 107> T. This magnitude is comparable to the earth magnetic field, around
50 uT. Itis weak compared to fields arising from permanent magnets or dedicated

electromagnets and superconducting magnets.

We may argue that there exists no infinite line of current. The Biot and Savart
law describes instead the elementary contribution to induction JB at point P,

B=B(r)u,

Figure 1.1 - So-called GErsted magnetic induction B, arising from an infinite and
linear wire with an electrical current /.
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Table 1.1 - Long-distance decay of induction arising from various types of
current distributions

Case Decay
Infinite line of current 1/r
Elementary segment 1/r?
Current loop (magnetic dipole) 1/r3

arising from an elementary part of wire §€ at point Q with a current /:

ol 0€ x QP
4mQP3

Notice this time the variation as 1/r>. This can be understood qualitatively
as a macroscopic (infinite) line is the addition (mathematically, the integral) of
elementary segments, and we have [ 1/r2dr = 1/r+Cte. It may also be argued that
there exists no elementary segments of current for conducting wirings, however
only closed circuits (loops), with a uniform current / along its length. When viewed
as a distance far compared to its dimensions, the Biot and Savart law for a small
loop of current can be expanded in Taylor series, which to first order reads

o { (u-r)r_u}.

r2

0B(P) = (1.4)

B(r) =

= (1.5)

where u is a pinpoint magnetic dipole, which is an example of a magnetic
moment. For a planar loop pu = IS where S is the surface vector normal to
the plane of the loop, oriented accordingly with the electrical current. Here it
appears clearly that the SI unit for a magnetic moment is A- m?. Also, note now
the variation with 1/r3. This may be understood as the first derivative of the
variation like 1/r? arising from an elementary segment, due to nearby regions run
by opposite vectorial currents j (e.g. the opposite parts of a loop).

Table 1.1 summarizes the three cases described above.

1.2 Magnetic materials

A magnetic material is a body which displays a magnetization M(r), i.e. a volume
density of magnetic moments. The Sl unit for magnetization therefore appears
naturally as A-m?/ms3, thus A/m". In any material some magnetization may be
induced under the application of an external magnetic field H. We define the
magnetic susceptibility xy with M = yH. This polarization phenomenon is named
diamagnetism for x < o0 and paramagnetism for x > o.

"We shall always use strictly the names magnetic moment and magnetization. Experimentally
some techniques provide direct or indirect access to magnetic moments (e.g. an extraction
magnetometer, a SQUID, magnetic force microscopy), other provide a more natural access to
magnetization, often through data analysis (e.g. magnetic dichroism of X-rays, electronic or
nuclear resonance).
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Table 1.2 - Main features of a few important magnetic materials: order-
ing (Curie) temperature T¢, spontaneous magnetization Ms, a magnetocristalline
anisotropy constant K at 300 K (The symmetry of the materials, and hence the
order of the anisotropy constants provided, is not discussed here). The last
column provides the diameter below which a spherical particle of that material
is superparamagnetic at room temperature for an observation time of 1s, a state
that will be defined in chap.lll, p.104.

Material Tc (K) Mg (KA/m)  poMs (T) K (kJ/m3)  Dsook (NM)

Fe 1043 1730 2.174 48 16

Co 1394 1420 1.784 530 7.2

Ni 631 490 0.616 -4.5 35

Fe,oNig, (Permalloy) 850 835 1.050 ~ 0 -
FeesCoss (Permendur) 1210 1950 2.45 20 24.7
Fe;0, 858 480 0.603 -13 25
BaFe,;,O,q 723 382 0.480 250 9.2
Nd,Fe,,B 585 1280 1.608 4900 3.4
SmCos 995 907 1.140 17000 2.3
Sm,Co,; 1190 995 1.250 3300 3.9

FePt L1, 750 1140 1.433 6600 3.1

CoPt L1, 840 796 1.000 4900 3.4
Co,Pt 1100 1100 1.382 2000 4.6

Diamagnetism arises from a Lenz-like law at the microscopic level (electronic
orbitals), and is present in all materials. yqia IS constant with temperature and its
value is material-dependent, however roughly of the order of 107>. Peak values
are found for Bi (y = —1.66 x 1074) and graphite along the c axis (y = —4 X
104). Such peculiarities may be explained by the low effective mass of the charge
carriers involved.

Paramagnetism arises from partially-filled orbitals, either forming bands or
localized. The former case is called Pauli paramagnetism. y is then temperature-
independent and rather weak, again of the order of 107>, The later case is called
Curie paramagnetism, and y scales with 1/T. A useful order of magnitude in Curie
paramagnetism to keep in mind is that a moment of 1ug gets polarized at 1K
under an induction of 1T.

Only certain materials give rise to paramagnetism, in particular metals or
insulators with localized moments. Then diamagnetism and paramagnetism add
up, which may result in an overall paramagnetic of diamagnetic response.

Finally, in certain materials microscopic magnetic moments are coupled
through a so-called exchange interaction, leading to the phenomenon of mag-
netic ordering at finite temperature and zero field. For a first approach magnetic
ordering may be described in mean field theory modeling a molecular field, as we
will detail for low dimension systems in Chapter Il. The main types of magnetic
ordering are:

« Ferromagnetism, characterized by a positive exchange interaction, end
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Figure 1.2 - Amperian description of a ferro (or ferri-)magnetic material: mi-
croscopic currents cancel each other between neighboring regions, except at the
perimeter of the body.

favoring the parallel alignment of microscopic moments. This results in
the occurrence of a spontaneous magnetization Ms"2. In common cases Ms
is of the order of 10°® A/m, which is very large compared to magnetization
arising from paramagnetism or diamagnetism. The ordering occurs only at
and below a temperature called the Curie temperature, written Tc. The only
three pure elements ferromagnetic at room temperature are the 3d metals
Fe, Ni and Co (Table 1.2).

+ Antiferromagnetism results from a negative exchange energy, favoring the
antiparallel alignment of neighboring moments'3 leading to a zero net
magnetization Ms at the macroscopic scale. The ordering temperature is
in that case called the Néel temperature, and is written Ty.

 Ferrimagnetism arises in the case of negative exchange coupling between
moments of different magnitude, because located each on a different sub-
lattice4, leading to a non-zero net magnetization. The ordering temperature
is again called Curie temperature.

Let us consider the simple case of a body with uniform magnetization, for
example a spontaneous magnetization Ms = M.Z (Figure 1.2). It is readily seen
that the equivalent current loops modeling the microscopic moments cancel each
other for neighboring loops: only currents at the perimeter remain. The body
may thus be modeled as a volume whose surface carries an areal density of
electrical current, whose magnitude projected along Z is M. This highlights a
practical interpretation of the magnitude of magnetization expressed in A/m.

Let us stress a fundamental quantitative difference with Ersted fields. We
consider again a metallic wire carrying a current of 1A. For a cross-section of

l2The s in Ms is confusing between the meanings of spontaneous and saturation. We will discuss
this fine point in the next paragraph.

3More complexe arrangements, non-colinear like spiraling, exist like in the case of Cr.

L4Similarly to antiferromagnetism, more complex arrangements may be found.
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1mm? a single wiring has 1000 turns/m. The equivalent magnetization would be
103 A/m, which is three orders of magnitude smaller than M of usual ferromag-
netic materials. Thus a significant induction may easily be obtained from the
stray field of a permanent magnet, of the order of u,Ms ~ 1T. It is possible to
reach magnitude of induction of several Teslas with wirings, however with special
designs: large and thick water-cooled coils to increase the current density and
total value, or use superconducting wires however requiring their use at low
temperature, or use pulsed currents with high values, this time requiring small
dimensions to minimize self-inductance.

Let us finally recall the relationship between induction, magnetic field and
magnetization:
B = io(H+ M) (1.6)

This relationship may be derived starting from Maxwell's equations, considering
as two different ensembles the free electric charges, and the so-called bound
electric charges plus spin magnetic moments, contributing to magnetization M[3].
B is the induction vector field described in Maxwell's equations. From the above
1oH appears as the induction (or H in terms of magnetic field), excluding the
local contribution of magnetization. Thus, H is the relevant quantity whenever is
considered the effect of the environment on magnetization in materials as will
be discussed in the following: Zeeman energy or internal energy, mechanical
torque etc. On the reverse, B is the relevant quantity to describe the effect of
an independent system like the Lorentz force F = qv x B acting on a free charge.

1.3 Magnetic materials under field - The hysteresis loop

Let us consider a system mechanically fixed in space, subjected to an applied
magnetic field H. This field gives rise to a Zeeman energy, written £z = —u,Ms - H
for a volume density, or £z = —uou - H for the energy of a magnetic moment. The
consequence is that magnetization will tend to align itself along H, which shall be
attained for a sufficient magnitude of H. This process is called a magnetization
process, or magnetization reversal. The quantity considered or measured may be
a moment or magnetization, the former in magnetometers and the latter in some
magnetic microscopes or in the Extraordinary Hall Effect, for example. It is often
displayed, in models or as the result of measurements, as a hysteresis loop, also
called magnetization loop or magnetization curve. The horizontal axis is often
H or uoH, while the y axis is the projection of the considered quantity along the
direction of H[e.g.: (M - H)/H].

Hysteresis loops are the most straightforward and widespread characteri-
zation of magnetic materials. We will thus discuss it in some details, thereby
introducing important concepts for magnetic materials and their applications.
We restrict the discussion to quasistatic hysteresis loops, i.e. nearly at local
equilibrium. Dynamic and temperature effects require a specific discussion and
microscopic modeling, which will be discussed in chapter sec.lll, p.104.
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Ms ]JOHA

Fifrst ~ Llof{

HoHc i Mo M \
> <

Recoil 1l¢op,

(@) (b)

Figure 1.3 - (a) Typical hysteresis loop illustrating the definition of coercivity H,
saturation Ms and remanent M, magnetization. A minor (recoil) loop as well
as a first magnetization loop are shown in thinner lines (b) The losses during a
hysteresis loop equal the area of the loop.

Figure 1.3 shows a typical hysteresis loop. We will speak of magnetization for
the sake of simplicity. However the concepts discussed more generally apply to
any other quantity involved in a hysteresis loop.

« Symmetry - Hysteresis loops are centro-symmetric, reflecting the time-
reversal symmetry of Maxwell's equations (H - —H and M — —M)

- Time-reversal symmetry and shifted hysteresis loops. We will

, \ see in chapter Il that hysteresis loops of certain heterostructured
\/ systems may be non-centro-symmetric, due to shifts along both
the field and magnetization axes. This however does not contra-

dict the principle of time-reversal symmetry, as such hysteresis

loops are minor loops. Application of a sufficiently high field (let

aside the practical availability of such a high field) would yield a
centro-symmetric loop.

+ 'Saturation’ magnetization - Due to Zeeman energy the magnetization
tends to align along the applied field when the magnitude of the latter is
large, associated with a saturation of the M(H) curve. For this reason one
often names saturation magnetization the resulting value of magnetization.
We may normalize the loop with its value towards saturation, and get a
function spanning in [—1; 1].
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Spontaneous and saturation magnetization. Two remarks

, \ shall be made. First the 's’ subscript brings some confusion

\/ between spontaneous and saturation magnetization. Both have
a precise meaning in the mean-field model for magnetic order-
ing: the saturation magnetization is the maximum magnetization
available from microscopic (local) moments, if not averaged out
by thermal effects. The spontaneous magnetization is the macro-
scopic magnetization under zero applied field, resulting from the
competition of exchange energy and thermal disorder. Saturation
magnetization may also be used with an experimental meaning,
that of the value of magnetization reached towards high applied
magnetic field in a hysteresis loop. The knowledge of the volume
of the system (if a moment is measured) or a model (in case an
experiment probes indirectly magnetization) is needed to link an
experimental quantity with magnetization. Intrinsic or extrinsic
contributions to the absence of true saturation of hysteresis loops
are also an issue.

+ Remanent magnetization - starting from the application of an external
magnetic field, we call remanent magnetization (namely, which remains)
and write M, or m, when normalized, the value of magnetization remaining
when the field is back to zero. After applying a positive (resp. negative) field,
m; is usually found positive (resp. negative)"s.

+ Coercive field - We call coercive field (namely, which opposes an action,
here that of an applied magnetic field) and write H,, the magnitude of field
for which the loop crosses the x axis, i.e. when the average magnetization
projected along the direction of the field vanishes.

+ Hysteresis and metastability - We have mentioned that the sign of rema-
nence depends on that of the magnetic field applied previously. This feature
is named hysteresis: the M(H) path followed for rising field is different
from the descending path. Hysteresis results from the physical notion of
metastability: for a given magnitude (and direction) of magnetic field, there
may exist several equilibrium states of the system. These states are often
only local minima of energy, and then said to be metastable. Coercivity
and remanence are two signatures of hysteresis. The number of degrees
of freedom increases with the size of a system, and so may do the number
of metastable states in the energy landscape. The field history describes
the sequence of magnetic fields (magnitude, sign and/or direction) applied
before an observation. This history is crucial to determine in which stable
or metastable state the system is left's. This highlights the important
role played by spatially-revolved techniques (both for microscopies and in
reciprocal space) to deeply characterize the magnetic state of a system.

5See short question 3 in chap.lll (see p.131) for a case of negative remanence
'®The reverse is not true: it is not always possible to design a path in magnetic field liable to
prepare the system in an arbitrary metastable state.
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Metastability implies features displayed during first-order transitions such
as relaxation (over time) based on domain-wall movement, nucleation and
the importance of extrinsic features in these such as defects. This implies
that the modeling and engineering of the microstructure of materials is a
key to control properties such as coercivity and remanence.

Energy losses - We often read the name magnetic energy, for a quantity
including the Zeeman energy. This is improper from a thermodynamic point
of view. The Zeeman quantity —u,M - H is the counterpart of +PV for fluids
thermodynamics: H is the vectorial intensive counterpart of pressure, and
M is the vectorial extensive'” counterpart of volume, i.e. a response of the
system to the external stimulus. Thus, we should use the name density of
magnetic enthalpy for the quantity Ein« — oM - H, where E is the density
of internal magnetic energy of the system'"®, with analogy to H = U + PV.
A readily-seen consequence is that the quantity +u.H-dM, analogous to
—PdV, is the density of work provided by the (external) operator and trans-
ferred to the system upon an infinitesimal magnetization process. Rotating
the magnetization loop by 90° to consider M as the x axis, we see that the
area encompassed by the hysteresis loop measures the amount of work
provided to the system upon the loop, often in the form of heat (Figure 1.3b).

Functionalities of magnetic materials - The quantities defined above
allow us to consider various types of magnetic materials, and their use for
applications. Metastability and remanence are key properties for memory
applications such as hard disk drives (HDDs), as its sign keeps track of the
previously applied field, defining so-called up and down states. Coercivity
is crucial for permanent magnets, which must remain magnetized in a well-
defined direction of the body with a large remanence, giving rise to forces
and torques of crucial use in motors and actuators. In practice coercivities of
one or two Teslas may be reached in the best permanent-magnet materials
such as SmCos, Sm,Co,; and Nd,Fe,,B. The minimization of losses in the
operation of permanent magnets and magnetic memories is important,
both to minimize heating and for energy efficiency. Among applications
requiring small losses are transformers and magnetic shielding. To achieve
this one seeks both low coercivity and low remanence, which defines so-
called soft magnetic materials. These materials are also of use in magnetic
field sensors based on their magnetic susceptibility, providing linearity (low
hysteresis) and sensitivity (large susceptibility dM/dH). A coercivity well
below 103A/m (or 1.25 mT in terms of pyH) is obtained in the best soft
magnetic materials, typically based on Permalloy (Fe,,Nig,). On the reverse,
some applications are based on losses such as induction stoves. There the
magnitude of coercivity is a compromise between achieving large losses
and the ability of the stove to produce large enough ac magnetic fields to

'7or more precisely, the magnetic moment of the entire system [ MsdV.
%

'8see part 3 for the description of contributions to Ejq.
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reverse magnetization. Finally, in almost all applications the magnitude of
magnetization determines the strength of the sought effect, such as force
or energy of a permanent magnet, readability for sensors and memories,
energy for transformers and induction heating.

+ Partial loops - In order to gain more information about the magnetic
material than with a simple hysteresis loop, one may measure a first
magnetization loop (performed on a virgin or demagnetized sample) or a
minor loop (also called partial loop or recoil loop), see Figure 1.3a.

Intrinsic versus extrinsic properties. One calls intrinsic those proper-
? ties of a material depending only on its composition and structure, and
extrinsic those properties related to microscopic phenomena related to
e.g. microstructure (crystallographic grains and grain boundaries), sam-
ple shape etc. For example, spontaneous magnetization is an intrinsic
qguantity, while remanence and coercivity are extrinsic quantities.

1.4 Domains and domain walls

Hysteresis loop, described in the previous section, concerns a scalar and inte-
grated quantity. It may thus hide details of magnetization (a vector quantity) at
the microscopic level. Hysteresis loops must be seen as one out of many sig-
natures of magnetization reversal, not a full characterization. Various processes
may determine the features of hysteresis loops described above. It is a major
task of micromagnetism and magnetic microscopies to unravel these microscopic
processes, with a view to improve or design new materials.

For instance remanence smaller than one may result from the rotation of
magnetization or from the formation of magnetic domains etc. Magnetic domains
are large regions where in each the magnetization is largely uniform, while this
direction may vary from one domain to another. The existence of magnetic
domains was postulated by Pierre WEISS in his mean field theory of magnetism in
1907, to explain why materials known to be magnetic may display no net moment
at the macroscopic scale. The first direct proof of the existence of magnetic do-
mains came only in 1931. This is due to the Bitter technique, where nanoparticles
are attracted by the loci of domain walls[6]. In 1932 Bloch proposes an analytical
description of the variation of magnetization between two domains. This area of
transition is called a magnetic domain wall. The basis for the energetic study of
magnetic domains was proposed in 1935 by Landau and Lifshitz.

Let us discuss what may drive the occurrence of magnetic domains, whereas
domain walls imply a cost in exchange and other energies, see sec.5. There exists
two reasons for this occurrence, which in practice often take place simultane-
ously. The first reason is energetics, where the cost of creating domain walls
is balanced by the decrease of dipolar energy which would be that of a body
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remaining uniformly magnetized. This will be largely developed in chap.ll. The
second reason is magnetic history, which we have already mentioned when dis-
cussing hysteresis loops (see sec.1.3). For instance upon a partial demagnetization
process up to the coercive field, domain walls may have been created, whose
propagation will be frozen upon removal of the magnetic field.

Summary

Magnetic fields and magnetic materials. Following Maxwell's equations, magnetic
induction B arises from moving charges. At each location in space B arises from two
contributions: local spin and orbiting charges in matter, called magnetization M; the
remainder called magnetic field H, arising from distant spin and moving charges (ei-
ther distant magnetization, or current in a circuit, e.g. in a coil). Magnetization is also
the volume density of magnetic moments in a magnetic material. The hysteresis
loop M(H) is the most common characterization of a magnetic material, underlying
many processes implying magnetic domains

2 Units in Magnetism

The use of various systems of units is a source of annoyance and errors in
magnetism. A good reference about units is that by F. Cardarelli[8]. Conver-
sion tables for magnetic units may also be found in many reference books in
magnetism, such as those of S. Blundell[1] and J. M. D. Coey[3]. An overview of
the Systeme International and conventions for writing units may be downloaded
from the Bureau International des Poids et Mesures (BIPM)[9]. We shall here
shortly consider three aspects:

« The units - A system of units consists in choosing a reference set of ele-
mentary physical quantities, allowing one to measure each physical quantity
with a figure relative to the reference unit. All physical quantities may then
be expressed as a combination of elementary quantities; the dimension
of a quantity describes this combination. For a long time many different
units were used, depending on location and their field of use. Besides
the multiples were not the same in all systems. The wish to standardize
physical units arose during the French revolution, and the Academy of
Sciences was in charge of it. In 1791 the meter was the first unit defined,
at the time as the ten millionth of the distance between the equator and
a pole. Strictly speaking four types of dimensions are enough to describe
all physical variables. A common choice is: length L, mass M, time T,
and electrical current I. This lead to the emergence of the MKSA set of
units, standing for Meter, Kilogram, Second, Ampére for the four above-
mentioned quantities. The Conférences Générale des Poids et Mesures
(General Conference on Weighs and Measures), an international organi-
zation, decided of the creation of the Systeme International d’Unités (SI).
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In SI, other quantities have been progressively appended, which may in
principle be defined based on MKSA, however whose independent naming
is useful. The three extra Sl units are thermodynamic temperature T (in
Kelvin, K), luminous intensity (in candela, cd) and amount of matter (in mole,
mol). The first two are linked with energy, while the latter is dimensionless.
Finally, plane angle (in radian, rad) and solid angles (in steradian, sr) are
called supplementary units. Another system than MKSA, of predominant
use in the past, is the cgs system, standing for Centimeter, Gram, and
Second. At first sight this system has no explicit units for electrical current
or charge, which is a weakness with respect to MKSA, e.g. when it comes
to check the dimension homogeneity of formulas. Several sub-systems
were introduced to consider electric charges or magnetic moments, such as
the esu (electrostatic units), emu (electromagnetic units), or the tentatively
unifying Gauss system. In practice, when converting units between MKSA
and cgs in magnetism one needs to consider the cgs-Gauss unit for electrical
current, the Biot (Bi), equivalent to 10 A. Other names in use for the Biot are
the abampere or the emu ampere. Based on the decomposition of any
physical quantity in elementary dimensions, it is straightforward to convert
quantities from one to another system. For magnetic induction B 1T is
the same as 10% G (Gauss), for magnetic moment . 1A-m? is equivalent to
103 emu and for magnetization M 1A/m is equivalent to 1073 emu/cm3. In
cgs-Gauss the unit for energy is erg, equivalent to 1077]. The issue of units
would remain trivial, if restricted to converting numerical values. The real
pain is that different definitions exist to relate H, M and B, as detailed below.

+ Defining magnetic field H - In SI induction is most often defined with
B = uo(H + M), whereas in cgs-Gauss it is defined with B = H + 47M.
The dimension of u, comes out to be L-M-T 2172, thus p, = 47 X
1077m-kg-s7>-A"? in Sl. Using the simple numerical conversion of units
one finds: p, =4rcm-g-s—2-Bi~2. Similar to the absence of explicit unit
for electrical current, it is often argued that p, does not exist in cgs. The
conversion of units reveals that one may consider it in the definition of
M, with a numerical value 4. However the definition of H differs, as the
same quantity is written poH in Sl, and (u/47)H in cgs-Gauss. Thus, the
conversion of magnetic field H gives rise to an extra 4x coefficient, besides
powers of ten. This pitfall explains the need to use an extra unit, the cersted,
to express values for magnetic field H in cgs-Gauss. Then 10e in cgs-Gauss
is equivalent to (103/47) A/m'9 in SI. A painful consequence of the different
definitions of H is that susceptibility x = dM/dH differs by 47 between both
systems, although is is a dimensionless quantity: xcs = (1/47)xs. The
same is true for demagnetizing coefficients if defined by Hy = —NM, with
Ncgs = 47Ns).

191n practice, the absence of i, in the cgs system often results in the use of either cersted or
Gauss to evaluate magnetic field and induction.
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- Defining magnetization M - we often find the writing / = p,M in the
literature. More problematic is the (rather rare) definition to use Ms instead
of uoMs. It is for instance the case of the book of Stohr and Siegmann[10],
otherwise a very comprehensive book. These authors use the SI units,
however define: B = ioH+ M. This can be viewed as a compromise between
cgs and S, however has an impact on all formulas making use of M.

Summary

M, H, B and the system of units. This section highlights that, beyond the mere
conversion of numerical values, formulas depend on the definition used to link
magnetization, magnetic field and induction. Itis crucial to carefully check the system
of units and definition used by authors before copy-pasting any formulas implying
M, H or B.

3 The various types of magnetic energy

3.1 Introduction

There exists several sources of energy in magnetic systems, which we review in
this section. For the sake of simplicity of vocabulary we restrict the following
discussion to ferromagnetic materials, although all aspects may be extended
to other types of orders. These energies will be described in the context of
micromagnetism.

Micromagnetism is the name given to the investigation of the competition
between these various energies, giving rise to characteristic magnetic length
scales, and being the source of complexity of distributions of magnetization,
which will be dealt with in chap.ll. Its principles were first outlined in 1940 by
William Fuller Brown, Jr[11].

Micromagnetism, be it numerical or analytical, is in most cases based on two
assumptions:

« The variation of the direction of magnetic moment from (atomic) site to
site is sufficiently gradual so that the discrete nature of matter may be
ignored. Magnetization M and all other quantities are described in the
approximation of continuous medium: they are continuous functions of the
space variable r.

+ The norm M; of the magnetization vector is constant and uniform in any ho-
mogeneous material. This norm may be that at zero or finite temperature.
The latter case may be viewed as a mean-field approach.

Based on these two approximations for magnetization we often consider the unit
vector m(r) to describe magnetization distributions, such that M(r) = Msm(r).
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3.2 Zeeman energy

The Zeeman energy pertains to the energy of magnetic moments in an external
magnetic field. Its density is:
E, = —poM-H (1.7)

E; tends to favor the alignement of magnetization along the applied field. As
outlined above, this term should not be considered as a contribution to the
internal energy of a system, however as giving rise to a magnetic enthalpy.

3.3 Magnetic anisotropy energy

The theory of magnetic ordering predicts the spontaneous occurrence of a mag-
netization M, however with no restriction on its direction in space. In a real system
the internal energy depends on the direction of M with the underlying crystalline
direction of the solid. This arises from the combined effect of crystal-field effects
(coupling electron orbitals with the lattice) and spin-orbit effects (coupling orbital
with spin moments).

This internal energy is called magnetocrystalline anisotropy energy, whose
density will be written Ec in these notes. One also often find the acronym MAE
in the literature, for Magnetic Anisotropy Energy. The consequence of Eq is the
tendency for magnetization to align itself along certain axes (or in certain planes)
of a solid, called easy directions. On the reverse, directions with a maximum
of energy are called hard axes (or planes). Magnetic anisotropy is at the origin of
coercivity, although the quantitative link between the two notions is complex, and
will be introduced in chap.ll.

The most general case may be described by a function En,c = Kf(0, v), where f is
a dimensionless function. In principle any set of angular functions complying with
the symmetry of the crystal lattice considered may be used as a basis to express
f and thus E,.. Whereas the orbital functions Y, of use in atomic physics may be
suitable, in practice one uses simple trigonometric functions. Odd terms do not
arise in magnetocrystalline anisotropy because of time-reversal symmetry. Group
theory can be used to highlight the terms arising depending on the symmetry of
the lattice.

For a cubic material one finds:
Emcecun = KicS + Ky + K3c,02 +... (1.8)

with s = aZaj + a2ai + o502 and p = ajaia3, o; being the cosines of the

magnetization direction with the three axes. For hexagonal symmetry
Emc’hex = K1 Sin29+K2 Sin40+ [N (|.9)

where 6 is the (polar) angle between M and the ¢ axis. Here we dropped the
azimuthal dependence because it is of sixth order, and that in practice the
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magnitude of anisotropy constants decreases sharply with its order. Thus for
an hexagonal material the magnetocrystalline anisotropy is essentially uniaxial.

Group theory predicts the form of these formulas, however not the numerical
values, which are material dependent. For example for Fe K;c = 48k]/m3 so that
the < 001 > directions (resp. < 111 >) are easy (resp. hard) axes of magnetization,
while for Ni K, = —5kJ/m3 so that < 001 > (resp. < 111 >) are hard (resp. easy)
axes of magnetization. In Co K; = 410kJ/m3 and the c axis of the hexagon is the
sole easy axis of magnetization.

In many cases one often considers solely a second-order uniaxial energy:
Emc = K,sin?0 (1.10)

Itis indeed the leading term around the easy axis direction in all above-mentioned
cases. We will see in sec.4 thatitis also a form arising in the case of magnetostatic
energy. It is therefore of particular relevance. Notice that it is the most simple
trigonometric function compatible with time-reversal symmetry and giving rise to
two energy minima, this liable to give rise to hysteresis. It is therefore sufficient
for grasping the main physics yet with simple formulas in modeling. The strength
of anisotropy may be expressed in terms of energy through K, or in field units
through the so-called anisotropy field H, = 2K,/10Ms. The meaning and useful-
ness of this field value will be detailed in chap.lll for quasistatic magnetization
reversal, and in chap.IV for precessional motion.

@ Hard versus soft magnetic materials. Materials with low magnetic
anisotropy energy are called soft magnetic materials, while materials
with large magnetic anisotropy energy are called hard magnetic materi-
als. The historical ground for these names dates back to the beginning
of the twentieth century where steel was the main source of magnetic
material. Mechanically softer materials were noticed to have a coercivity

lower than that of mechanically harder materials.

@ Sources of magnetic anisotropy. One should also consider magne-
toelastic anisotropy energy, written E. This is the magnetic energy
associated with strain (deformation) of a material, either compressive,
extensive or shear. £ may be viewed as the derivative of Enc with
respect to strain. In micromagnetism the anisotropy energy is described
phenomenologically, ignoring all microscopic details. Thus we may
consider the sum of Enc and Ene, Written for instance E; or Eg, a

standing for anisotropy and K for an anisotropy constant.

3.4 Exchange energy
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€= —JS$:" S, (11)  pansion of exchange with 6 to link

discrete exchange to continuous the-
J is positive for ferromagnetism, and tends  ory.
to favor uniform magnetization. Let us out-
line the link with continous theory used in micromagnetism. We consider the
textbook case of a (one-dimensional ) chain of XY classical spins, i.e. whose
direction of magnetization may be described by a single angle 6¢; (Figure 1.4). The
hypothesis of gradual variation of #; from site to site legitimates the expansion:
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This equation may be generalized to a three dimensional system and moments
allowed to pointin any direction in space. Upon normalization with a3 to express a
density of energy, and forgetting about numerical factors related to the symmetry
and number of nearest neighbors, one reaches:

Eex =A(VM) . (113)

m(r) is the unit vector field describing the magnetization distribution. The writing
(Vm)?is a shortcut for ), Zj(am,-/ﬁxj)z, linked to Eq.(l.12). A is called the exchange
stiffness, such as A ~ (/S?/2a). It is then clear that the unit for A is J/m, which we
find also in Eq.(l.13). The order of magnitude of A for common magnetic materials
such as Fe, Co and Niis10™"J/m.

3.5 Magnetostatic energy

Magnetostatic energy, also called dipolar energy and written Eq, is the mutual
Zeeman-type energy arising between all moments of a magnetic body through
their stray field (itself called magnetostatic field or dipolar field and written Hg).
When considering as a system an infinitesimal moment 6 = MV the Zeeman
energy provides the definition for enthalpy. However when considering the entire
magnetic body as both the source of all magnetic field (dipolar field Hq) and that
of moments, this term contributes to the internal energy. The volume density of
dipolar energy may be written:

]
Ea = — 11oM.H. (114)
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The 1/2 prefactor results from the fact that the Zeeman interaction between two
elementary moments is a mutual energy, which shall not be counted twice upon
integration over the entire system (see also sec.4). Also, as dipolar fields arise
in a linear fashion from magnetization, dipolar energy scales with the so-called
dipolar constant Ky = 1oMz.

Dipolar energy is the most difficult contribution to handle in micromagnetism.
Indeed, due to its non-local character it may be expressed analytically in only
a very restricted number of simple situations. Its numerical evaluation is also
very costly in computation time as all moments interact with all other moments;
this contributes much to the practical limits of numerical simulation. Finally, due
to the non-uniformity in direction and magnitude of the magnetic field created
by a magnetic dipole, magnetostatic energy is a major source of the occurrence
of non-uniform magnetization configurations in bulk as well as nanostructured
materials, especially magnetic domains. For all these reasons we dwell a bit on
this term in the following section.

3.6 Characteristic quantities

In the previous paragraphs we introduced the various sources of magnetic
energy, and discussed the resulting tendencies on magnetization configurations
one by one. When several energies are involved, balances must be found and
the physics is more complex. This is the realm of micromagnetism, the investi-
gation of the arrangement of the magnetization vector field and magnetization
dynamics. It is a major branch of nanomagnetism, and will be largely covered in
chap.ll.

It is a general situation in physics that when two or more effects compete,
characteristic quantities emerge such as energy or length scales, and also dimen-
sionless number. Here these will be built upon combination of three quantities
with different units: exchange stiffness A, magnetization Ms and applied field
H, and an anisotropy constant K such as K,. Characteristic length scales are of
special importance in nanomagnetism, determining the size below which specific
phenomena occur. Here we only make two preliminary remarks; more will be
discovered and discussed in the next chapter, ending with an overview.

Let us assume that in a problem only magnetic exchange and anisotropy
compete. A and K, are expressed respectively in J/m and J/m3. The only way
to combine these quantities to express a length scale, which we expect to arise
in the problem, is 4, = /A/K,. We will call 4, the anisotropy exchange length[12]
or Bloch parameter as often found in the literature. This is a direct measure of
the width of a domain wall where magnetization rotates (limited by exchange)
between two domains whose direction is set by K.

In a problem where exchange and dipolar energy compete, the two quantities
at play are A and Kq = (1/2)uocM?. In that case we may expect the occurrence of

the length scale 44 = \/A/Ky = +/2A/puoM?, which we will call dipolar exchange
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length[6] or exchange length as more often found in the literature.

In usual magnetic materials 4, ranges from roughly one nanometer in the case
of hard magnetic materials (high anisotropy), to several hundreds of nanometers
in the case of soft magnetic materials (low anisotropy). 44 is of the order of 10 nm.

Summary

The various types of magnetic energy. Magnetization in a magnetic material
is described by the theory called micromagnetism, where magnetization M is a
continuous variable in space, with constant modulus. When at equilibrium, the
distribution of M in a piece of material reflects the balance between several energies:
exchange which tends to maintain magnetization uniform; magnetic anisotropy
energy which tends to direct magnetization along certain crystallographic directions
or in certain planes; Zeeman and dipolar energy which tend to align magnetization
along the local magnetic field, be it of external nature or arise from distant moments
in the material. Characteristic length scales emerge from the competition between
different energies, against which the size of a system can be checked to determine
the magnetization distribution likely to occur.

4 Handling dipolar interactions

4.1 Simple views on dipolar interactions

To grasp the general consequences of Hy let us first consider the interaction
between two pinpoint magnetic dipoles u, and w,, split by vector r. Their mutual
energy reads (see sec.l.5):

_ Mo | (M), ) _
Ed——mﬁ 37 U (.15)

We assume both moments to have a given direction z, however with no constraint
on their sign, either positive or negative. Let us determine their preferred
respective orientation, either parallel or antiparallel depending on their locii,
that of u, being determined by vector r and the polar angle 6 with respect to
z (Figure I.5). Equation .15 then reads:

&p = ,UOH#;z(,] — 3c0s26) (1.16)

The ground state configuration being the one
minimizing the energy, we see that parallel align-
ment is favored if cos*6 > 1/3, that is within a
cone of half-angle 6 = 54.74°, while antiparallel
alignment is favored for intermediate angles (Fig-
ure l.g).

Figure 1.5 - Simple view on
dipolar energy. Interaction
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Thus, under the effect of dipolar interactions
two moments roughly placed along their easy axis
tend to align parallel, while they tend to align an-
tiparallel when placed next to each other. These
rules rely on angles and not the length scale, and
are thus identical at the macroscopic and micro-
scopic scales. The example is that of permanent
magnets, which are correctly approached by Ising
spins.

The occurrence of a large part of space where antiparallel alignement is
favored (outside the cone) makes us feel why bulk samples may be split in large
blocks with different (e.g. antiparallel) directions of magnetization. These are
magnetic domains. Beyond these hand-waving arguments, the quantitative con-
sideration of dipolar energy is outlined below in the framework of a continuous
medium.

4.2 Various ways to handle magnetostatics

The total magnetostatic energy of a system with magnetization distribution M(r)
reads :

€y = _% g M.Hg dV. (117)

V is the volume of the magnetic system considered. The pre-factor ; results from
the need not to count twice the mutual energy of each set of two elementary
dipoles taken together. The decomposition of a macroscopic body in elementary
magnetic moments and performing a three-dimensional integral is not a practical
solution to evaluate &4. It is often better to proceed similarly to electrostatics,
with divE = p/e, being replaced by divHy = —divM (derived from the definition
of B, and Maxwell's equation divB = 0). Within this analogy, p = —divM are
called magnetic volume charges. A little algebra shows that the singularity of
div M that may arise at the border of magnetized bodies (Ms going abruptly from
a finite value to zero on either side of the surface of the body) can be lifted by
introducing the concept of surface charges ¢ = M.A. A is the normal vector to
the surface of the magnetic body, oriented towards the outside. This analogy
is relevant because Hy has a zero curl and thus derives from a potential Hy =
—grad ¢q4, with:

0= J]f 3 @ ) e 95 (118)

Concerning the field, one then has:

Hf 2 —up Gt ¢ %dsu (1.19)
| | T 47|r — v
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Figure 1.6 - Magnetic charges. Magnetization and magnetic charges in simple
cases: (a) An infinite thin film with in-plane magnetization (cross-sectional view)
(b) An infinite thin film with out-of-plane magnetization (cross-sectional view)
(€) A cylinder of infinite length with uniform axial magnetization (d) A strip with
infinite length and a head-to-head domain wall.

In Eq.(1.18), the integral of the first term on the right hand side is
\ performed over the volume of the system, except at its very boundary
/ where the singularity was considered above and is taken into account
as surface charges. So, in principle the volume of integration should be
written 'V
dS. However, for the simplicity of notations, we write it V.

Simple distributions of magnetization and the associated magnetic charges are
displayed on Figure |.6. Equation .17 may then be worked out, integrating in parts:

Eq = ;yo JI M.grad ¢4 dV (1.20)
Space
= 1o [ M@6a/0) v (1.21)
Space
= [Snovom] °°OO - ;uosjjj(ami/axiwd dv (1.22)
pace
(1.23)

The first term cancels for a finite size system considered in the infinite space, and
one finds a very practical formulation:

€4 = ;uo (jj poa dV+ () oo dS) . (1.24)
V

ov
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Another equivalent formulation may be demonstrated:

€q = ;No H Hg dV (1.25)

Space

where integration if performed over the entire space. From the latter we infer
that &4 is always positive or zero. Equation 1.24 shows that if dipolar energy
alone is considered, its effect is to promote configurations of magnetization free
of volume and surface magnetic charges. Such configurations are thus ground
states (possibly degenerate) in the case where dipolar energy alone is involved.

e

* The tendency to cancel surface magnetic charges implies a very
general rule for soft magnetic materials: their magnetization
tends to remain parallel to the edges and surfaces of the system.

* The name dipolar field is a synonym for magnetostatic field. It
refers to all magnetic fields created by a distribution of magnetiza-
tion or magnetic moments in space. The name stray field refers to
that part of dipolar field, occurring outside the body responsible
for this field. The name demagnetizing field refers to that part
of dipolar field, occurring inside the body source of this field; the
explanation for this name will be given later on.

The term dipolar brings some confusion between two notions. The
first notion is dipolar (field or energy) in the general sense of magne-
tostatic. The name dipolar stems from the fact that to compute total
magnetostatic quantities of a magnetic body, whatever its complexity,
one way is to decompose it into elementary magnetic dipoles and per-
form an integration; the resulting calculated quantities are then exact.
The second notion is magnetic fields or energies arising from idealized
pinpoint magnetic dipoles, and obeying Eq.(l.15). When using the name
dipolar to refer to the interactions between two bodies, one may think
either that we compute the exact magnetostatic energy based on the
integration of elementary dipoles, or that we replace the two finite-size
bodies with pinpoint dipoles for the sake of simplicity, yielding on the
reverse an approach evaluation. In that latter case one may add extra
terms, called multipolar, to improve the accuracy of the approximation.
To avoid confusion one should stress explicitly the approximation
in the latter case, for instance mentioning the use of a point dipole
approximation.

4.3 Demagnetizing factors

Demagnetizing factors (or coefficients) are a simple concept providing figures for
the magnetostatic field inside a body, and the associated magnetostatic energy.
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When Eq.(1.19) is applied to uniform magnetization, only the surface contribution
remains:
(r—u)
Hq(r) = Ms ) ————" mn(u) dS, (1.26)
4r|r — ul3
ov

with M = M;m, m = mu; and n = n;i, with Einstein’s summation notation. A is
the local normal to the surface, oriented towards the outside of the body. Upon
integration over the entire volume, one gets the average value of the dipolar field
inside the system:

(Hy) = —MN-m
—Ms m;N;; i (1.27)

In these formula, Nisa 3 X 3 matrix with coefficients:

e | (2

ov

in which (r — u)|j is thejth component of (r — u). N is called the demagnetizing

matrix. It may be shown that N is symmetric and positive, and thus can be
diagonalized. The set of xyz axes upon diagonalization are called the main
or major axes. The new coefficients N;; of the diagonal matrix are called the
demagnetizing coefficients and will be written N; hereafter as a shortcut. Along
these axes one now has:

(Hq,) = —N;M. (1.29)

This highlights a simple interpretation of demagnetizing coefficients. First, they
are called demagnetizing as they are positive, so that on the average the internal
magnetostatic field is indeed opposite to magnetization. Second, each coefficient
is a direct measure of the strength of the demagnetizing field along the consid-
ered direction.

The same concepts can be applied to dipolar energy. As magnetization is
assumed to be uniform, from Eq.(1.17) it is straightforward that the density of
demagnetizing energy is directly connected to the average demagnetizing field
through Eq = —(10/2) (Hg) * M, so that in the end:

Eq Ky tm :

‘m
= mim; N,/ Ky (|30)

with Ky = > oMz, Again, when one considers the main axes of the system (in which
N is diagonal), this boils down to:

Eq = m?N;Ky (1.31)
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Table 1.3 - Demagnetizing factors. Cases of practical use

Case Demagnetizing factor Note
Slab Ny =1 Normal along x
Sphere Ny =1/3 Along any direction
Cylinder, disk cross-section Ny =1/2 Along transverse directions
General ellipsoid Ny = Zabc [ {(or2 + n)\/m] g
Prolate revolution ellipsoid Ny = % [\/11—? argsinh (@) —1 a=c/a<1
Oblate revolution ellipsoid Ny = a’z“i: [1 - \/ﬁ arcsin (@)] a=c/a>n
Cylinder with elliptical section Nx =0,Ny = c¢/(b+cyandN; = b /(b +c) Axis along x
Prism Analytical however long formula See: [6] or [15]

Based on this, a common use of demagnetization coefficients is to estimate the
difference of energy along different directions. Let us consider the simple case of
magnetization confined in the xy plane. mg + m7 = 1, so that the above equation
becomes, dropping a constant term,

Eq = (N; — Nj)Kq cos® ¢ (1.32)

with cos? = m,. In this example, dipolar energy takes the form of a second-
order uniaxial anisotropy. More generally, from Eq.(1.30) it is clear that N yields a
quadratic form for the energy even in the most general case, so that only second-
order anisotropies can arise from dipolar energy, at least for perfectly uniform
samples'™®.

The handwaving consideration of the distribution of surface charges shows
that the dipolar energy should be lower when magnetization is aligned parallel
to a long dimension of the system. This translates into lower values of the
demagnetizing coefficients along such directions. Besides, it can be shown that
Tr(N) = 1, so that N, + N, + N, = 1. For example, for an infinitely-long cylinder
with axis along Z, N, = o because there are no magnetic charges for M directed
along Z; N, = N, = 1/2 because x and y transverse directions are equivalent, and
the sum of al three coefficients is 1. Similarly, all N/'s equal 1/3 for a sphere. For
a thin film (also called slab), N, = N, = 0 and N, = 1. Analytical formulas or ex-
pansions for N;'s may be found for other shapes, such as revolution ellipsoids[13],
prisms[14, 15] (Figure 1.7), cylinders of revolution of finite length[16, 17], infinite
cylinders with a triangular cross-section[18], tetrahedrons[19, 20], torii[21]. Some
formulas are gathered in Table I.3. For other geometries micromagnetic codes or
Fourier-space computations[20] may be used.

l19see sec.4.4 for effects due to non-uniformities.
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Figure 1.7 - Demagnetizing factors. Numerical evaluation for prisms. (a) is the
full plot, while (b) is en enlargement for flat prisms.

Demagnetizing factors for an arbitrary shape?. While all the above
\ is true for bodies with an arbitrary shape, not even necessarily con-
/ nected, a special subset of bodies is worth considering: that of shapes
embodied by a polynomial surface of degree at most two. To these
belong slabs, ellipsoids and cylinders with an ellipsoidal cross-section.
In that very special case it may be shown within the non-trivial theory
of integration in space[22] that Eq.(l.29) is then true locally: in the case
of uniform magnetization, Hy is uniform and equal to —N;M when M is
aligned parallel to one of the major directions. This may allow the torque
on magnetization to be uniformly equal to zero, and thus ensures
the self-consistency of the assumption of uniform magnetization. This
makes the application of demagnetizing factors of somewhat higher
reliability than for bodies with an arbitrary shape. Notice, however,
that self-consistency does not necessarily imply that the uniform state
is stable and a ground state.

Caution needed for the applicability of demagnetizing factors. De-
\ magnetizing factors are derived based on the assumption of uniform
magnetization. While this assumption allows demagnetizing factors
to be defined and calculated analytically or numerically, care should
be taken when applying these to practical cases, where magnetization
configurations may not be uniform.

S

Summary

The various types of magnetic energy. Magnetostatic or equivalently-called
dipolar interactions, are complex to evaluate as they are long ranged, and involve
all couples of any two infinitesimal moments in a system. While dipolar energy can
be expressed conceptually in several equivalent integral forms, only in some very
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special cases can these be integrated analytically. This is the case of the concept
of demagnetizing factors, describing the situation of uniform magnetization, and
predicting the value of the internal demagnetizing field in a tensor form. Due to
this rather restrictive hypothesis, care need to be taken when applying these.

5 The Bloch domain wall

The existence of magnetic domains was suggested by Pierre WEISS in his mean
field theory of Magnetism in 1907. Magnetic domains were postulated to ex-
plain why large bodies made of a ferromagnetic materials could display no
net magnetic moment under zero external magnetic field. Their existence was
confirmed only in 1931 with a Bitter technique, based on magnetic nanoparticles
decorating the locii of domain walls because these particles are attracted by the
local gradient of magnetic field[6]. This example highlights the importance of
magnetic microscopy in the progress of micromagnetism. In 1932 Bloch provides
an analytical solution in a simple case to describe the region of transition between
two magnetic domains, which is named a magnetic domain wall. At this stage we
do not discuss the origin of magnetic domains, however focus on the model of a
domain wall.

The Bloch model is one-dimensional, i.e. considers a chain of spins. The idea
is to describe the transition between two three-dimensional domains (volumes)
in the form of a two-dimensional object with translational invariance in the plane
of the domain wall. It is assumed that magnetization remains in the plane of
the domain wall, a configuration associated with zero volume charges —divM
and thus associated zero dipolar energy. The only energies at play are then the
exchange energy, and the magnetic anisotropy energy which is assumed to be
uniaxial and of second order: Ex(x) = K,sin?6. Under these assumptions the
density of magnetic energy reads:

E(x) = Kysin?0 +A (df/dx)” (.33)

where x is the position along the chain of spins. The case thus consists in
exhibiting the magnetic configuration which minimizes the total energy

€=/ [Ex(X) + Eex(x)]dX. (1.34)

while fulfilling boundary conditions compatible for a 180° domain wall: §(—o0) = 0
and 0(+o0) = 7.



[.5. THE BLOCH DOMAIN WALL 35

@ Wall energy per unit surface. The unit for the wall energy in Eq.(l.34) is
clearly an energy per unit area, expressed inJ/m?. This makes sense as a
domain wall is a two-dimensional object. To calculate the total energy of
awall in a real system, for instance across a wire, one needs to integrate

Eq.(1.34) over the domain wall area, to get an energy in joules.

5.1 Simple variational model

This paragraph proposes an approximate solution for a domain wall, however
appealing for its simplicity and ability to highlight the physics at play, and a
reasonable numerical result. We consider the following model for a domain
wall of width ¢: = o for x < —(/2, 0 = w(x/¢ +1/2) for x € [-{/2;¢/2] and

= ¢ for x > (/2. In a variational approach we search for the value ¢, which
minimizes Eq.(1.34), after integration: & = K,¢/2 + Ax*/{. The minimization yields
loar = ™V/24/A/Ky and &, = m/21/AK,, is the associated energy.

@ How to ‘read’ the domain wall width. Letting aside the factor 7+/2 a
simple variational model highlights the relevance of the Bloch param-
eter 4, defined previously. How may we read this formula? Exchange
only would tend to enlarge the domain wall, hence its occurrence at the
numerator. To the reverse, the anisotropy energy gives rise to a cost of
energy in the core of the domain wall. This tends to decrease its width,

explaining its occurrence at the denominator.

5.2 Exact model

The exact profile of a Bloch domain wall may be derived using the principle of
functional minimization to find the function  minimizing €. It may be shown that
the principle of minimization is equivalent to the so-called Euler equation:

90~ dx | o) 35

Considering a magnetic system described by Eq.(I.34) one finds:
dey  d dé

9 T dx (”*a) (130

d=¢

dx?

(1.37)
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Upon multiplying both parts by df/dx and integration, this reads:

A {d&(x)} 4 {d@(a)}

dx dx
Eex(x) — Eex(Q) (1.38)

Ex(x) — Ex(a)

a is the origin of integration, here chosen as the center of the domain wall.
Considering two semi-infinite domains with equal local density of energy, E is
stationary (minimum) in both domains, and by convention may be chosen zero
with no loss of generality. Equation 1.38 applied to +o0o shows that Ex(a) = Ec(0),
and finally:

VX Ex(X) = Eex(X) (1.39)

We hereby reach a general and very important feature of a domain wall sepa-
rating two semi-infinite domains under zero applied field: the local density of
anisotropy and exchange energy are equally parted at any location of the system.
The equal parting of energy considerably eases the integration to get the areal
density of the domain wall"":

€ = 2/+OOA(d9/dx)2 dx
= 2/+Oo Ex(x) dx
= 2 m\/m (d6/dx) dx
= 2 9(6(+Oj)\/m do (1.40)

The energy of the domain wall may thus be expressed from the angular depen-
dence of the energy alone, without requiring solving the profile of the domain
wall, which may be interesting to avoid calculations or when the latter cannot be
solved.

Let us come back to the textbook case of the functional 1.33. After some
algebra one finds for the exact solution:

fex(x) = 2arctan [exp(x/A,)] (1.41)

Eex = 4vV/AKL. (1.42)

A, = /A/K, is of course confirmed to be a natural measure for the width W of
a domain wall. The exact solution along with that of the variational model are
displayed on Figure 1.8. Despite its crudeness, the latter is rather good, for both
the wall profile and its energy: the true factor afore \/AK, equals 4 against 7/2 ~
4.44 in the variational model. It is trivial to notice that €,,, > &, as the energy
of a test function may only be larger than the energy of the minimum functional.

""We set arbitrarily df/dx > o without loss of generality, using the symmetry x — —x.
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It shall be noticed that the equal parting of energy is retained in the variational
model, however only in its global form, not locally.

5.3 Defining the width of a domain wall

Several definitions for the width W of a domain wall have been proposed (see e.g.
Ref.[6], p.219). One may classify all possible definitions in mainly two categories.

The first type of definitions are based on the intercept of the asymptotes of the
domains, with some related to the domain wall. It was introduced and discussed
in detail by Lilley, to be applied to any kind functional of anisotropy, beyond
the simple case of uniaxial with second order[23]. Lilley considered the domain
wall described by the function of angle (x). In the case of uniaxial anisotropy
of second order this yields W, = w\/A/K, = w4, for the exact solution, and
WL iin = variational = /24, for the linear variational model. A variation in this type of
definition consists in using the asymptotes of the curve cos 6(x), instead of that of
0(x). One then finds W,, = 2,/A/K,, both in the exact and variational models[6]. In
the notation here m stands for the component of magnetization in the domains.
Definitions using asymptotes are more robust against the detailed shape of the
anisotropy function or experimental noise, than definitions based on a threshold,
named W;[24].

Beware of notations. The wall width is sometimes written §, instead
of W. Also, some call 4, the domain wall width. To avoid any confusion
it is advised to keep the name Bloch parameter for the latter quantity,
or the anisotropy exchange length (sec.3.6).

A second type of definitions are based on the integral of a function, instead of
its asymptote(s). This was introduced by Jakubovics[24], with the argument that
it would be less sensitive to the detailed shape of the anisotropy function, com-
pared to W, and W,,. In the case of the analysis of experimental data, an integral

o/2r

Magnetization angle

Distance (in A units)

Figure 1.8 - Domain wall profile. Exact solution for the profile of the Bloch
domain wall (green dots), along with its asymptote (green line). The lowest-energy
solution of the linear variational model is displayed as a black line.
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function is also less sensitive to noise than an asymptote defined at one point.
Following Jakubovics'paper'*? one may define the quantity: W, = sz sin? A(x)dx,
where | stands for Jakubovics. A variation of this definition is Wk = ffz sin 6(x)dx.
In the latter definition F stands for the flux of magnetization m = sinf. In the
present case of a uniaxial anisotropy of second order one finds W = W, and
W, = Wn. Yet another integral definition is the one proposed by Thiele: Wy =
2/ sz %—T\zdx[25]. It has been argued to be of special relevance for precessional
domain wall motion (see chap.lV), or domain-wall magnetoresistance[26].

Independent from the choice of asymptote versus integral computation, def-
initions based on a component of magnetization (sin #) may be more suited for
the analysis of domain walls investigated by magnetic microscopies probing the
projection of magnetization in a given direction.

Domain walls other than 7 angle. The use of cos and sin functions
in the definitions Wy, and W is dependent on the starting and ending
angles of the domain wall, here o and . For other choices or domain

walls with angle differing from 180°, these definitions shall be modified.

Summary

The Bloch domain wall. The properties of domain walls can be calculated exactly
in simple cases, for example when only magnetocrystalline energy competes with
exchange energy. This is the case of Bloch walls in which magnetization rotates in
the plane of the domain wall, creating a charge-free wall associated with no dipolar
energy. The wall width then scales like \//\/7 and its energy like v/AK. The prefactors
depend on the wall angle (180° or different), the type of anisotropy (uniaxial of
second order, or different), as well as the exact definition of wall width.

6 Magnetometry and magnetic imaging

There exist many techniques to probe magnetic materials. Due to the small
amounts to be probed, and the need to understand magnetization configura-
tions, high sensitivity and/or microscopies are of particular interest for nanomag-
netism. There exists no such thing as a universal characterization technique, that
would be superior to all others. Each of them has its advantages and disadvan-
tages in terms of versatility, space and time resolution, chemical sensitivity etc.
The combination of several such techniques is often beneficial to gain the full
understanding of a system.

Here a quick and non-exhaustive look is proposed over some techniques that

12|n the original paper from Jakubovic[24] the definition of the width is twice larger than the
present one
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are useful in nanomagnetism. This is a mere descriptive overview. In-depth
reviews may be found elsewhere[6, 27-29].

6.1 Extraction and vibrating magnetometers

Magnetometers are instruments capable of measuring the moment of a sample
as a function of various parameters, such as an applied field to deliver a magne-
tization loop.

Magnetometers are based on the measurement of the stray field arising
from the total moment of a sample. Their various implementations differ by
the principle of detection of the magnetic field. Two widespread techniques
are electromotive force through pick-up coils, and Josephson junctions in the
so-called SQUID (Superconducting QUantum Interference Device). Most mag-
netometers are based on extraction and vibration schemes: the sample is set
in oscillatory motion along an axis, so that its stray field arising at the probing
element varies over time, allowing a better precision using lock-in techniques, and
the rejection of some artifacts. The motion may be slow to moderate for SQUID (a
fraction of, to several Hz), or at a few tens of Hz for inductive techniques (so-
called vibrating sample magnetometers, VSM). Thus, magnetometers cannot
probe high-frequency magnetization processes. Variations exist such as torque
magnetometers, of particular interest for determining magnetic anisotropy.

Magnetometers measure the integrated moment of a sample; they are not
a microscopy technique. Samples need in general to be one centimeter or
smaller in size. This ensures that they fit the cavity where the magnetic field is
produced, and also remain of moderate size against the pick-up coils so that the
point dipole approximation is valid and measurements are quantitative. Modern
magnetometers achieve a sensibility in the range 1078 — 10~™ A- m?, which means
one or much smaller than one atomic layer of Fe, Co or Ni on a surface of
the order of 1cm?®. Nevertheless contributions arising from the sample holder,
substrates or impurities, may limit the absolute precision of the measurements.

A hysteresis loop is obtained in a couple of seconds to several tens of minutes
depending on the sensitivity and the number of points required. The external
field is produced by resistive or superconducting coils. A common environmental
condition is variable temperature (Figure 1.9). Pb. 6 considers the vibrating sample
magnetometer.

@ Magnetometers are one of the first techniques to have been developed
in the history of magnetism, and have been largely used to characterize
materials to determine their ordering state and temperature, their
magnetization and magnetic anisotropy. Magnetometers remain very

important for material development.
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Figure .9 - Magnetometry. (a) Artist view of a VSM-Squid magnetometer
from the company Quantum Design. (b) Hysteresis loops performed at various
temperatures of an epitaxial film Mo\ Fe(2 nm)\Mo with a (110) base plane for the
epitaxy. The field was applied a few degrees from the hard axis, itself defined by a
combination of second order and fourth order contributions.

6.2 Faraday and Kerr effects

Faraday and Kerr methods measure changes of the polarization of light upon
transmission into or reflection from (respectively) a magnetic sample; these are
called magneto-optical effects. Kerr is often labeled as MOKE, for Magneto-
Optical Kerr Effect. These methods allow indirectly to gather information about
the magnetization state of a sample.

Magnetization is not probed directly, although monitoring changes of the
polarization of light versus e.g. applied field allow to determine the shape of e.g.
hysteresis loops. Magnetic order is related to unfilled electronic shells, with split
states or band splitting of the order of an electron volt. Thus light, especially in
the visible range, is sensitive to magnetism through spin-dependent transition
between these states and bands. There are two microscopic effects. The first
one is birefringence, which is the delay of propagation of light depending on its
polarization, here in relation with the magnetization direction. Birefringence oc-
curs both in insulating and conductive materials. The second effect is dichroism,
which is the difference of absorption / reflection depending on the polarization of
light and the magnetization of the material.

Faraday is usually implemented with light impinging on the sample at normal
incidence. Kerr may be implemented at normal incidence (so-called polar MOKE),
or tilted incidence. The polarization of the incident light may be linear, circular
or modulated over time for more complex measurements. Depending on the
setup one may measure the change of intensity, the ellipticity or the rotation of
the light. They may arise from birefringence and/or dichroism, again depending
on the setup. MOKE is very sensitive due to the low penetration depth of light
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Figure l.10 - Magneto-optical techniques. (a) A Kerr microscope from the
evico magnetics company, equipped with an electromagnet to allow for in-field
measurements. (b) Hysteresis loops (averaged over thousands of loops) of a
thin Co film for various ramping rates of the applied field (Courtesy J. Vogel)
(c) Hysteresis loop (averaged over thousands of loops) of a single nano-object,
a magnetic nanotube of diameter 350 nm (focused Kerr setup. Courtesy M. Stano).
(d) Static domain pattern with a ramified shape, obtained using Kerr microscopy.
Sample: Au/Co/graphene ultrathin film with perpendicular anisotropy.

in metals, so that the sensibility can be better than one atomic layer. In the
Faraday geometry thick samples may be measured, while in MOKE in on metals
the probing depth does not exceed 10 nm.

Magneto-optical effects allow the combination of various environmental con-
ditions, such as magnetic field, temperature, pressure, embedded in other mea-
surement setup such as electric probers. They are also compatible with time-
resolved measurements, either averaged or in a stroboscopic mode. Finally, all
this may be averaged over a large spot of light, or in a focus spot for nano-object
measurement, or in an optical microscope to directly deliver magnetic images.
The spatial resolution is limited to the wavelength of light, or slightly below if an
objective with large numerical aperture is used, or with lenses immersed in high-
index transparent oils (Figure 1.10).

6.3 X-ray Magnetic Dichroism techniques
6.3.A  X-RAY MAGNETIC CIRCULAR DICHROISM

Dichroism exploits the dependence of the absorption of X-ray photons, in relation
with the direction of moments in the material, thus allowing to measure the
latter in an indirect way[30]. X-ray dichroism is non-negligible only when the
energy of photons is tuned to equal certain electronic transitions, where the final
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states are those of the partly-filled shells responsible for magnetism. Based on
the spin imbalance of free states, and selection rules for absorbtion based on
Fermi golden rule and involving the electronic orbital momentum and the photon
polarization, the probability of absorbtion depends on the polarization of the X-
ray photon. X-ray magnetism circular dichroism (XMCD) is the imbalance between
left and right circularly-polarized beams. It is only an indirect measurement of the
component of magnetization parallel to the beam direction, although analytical
selection rules or simulations allow to extract it, and besides with an indication
of both the spin and the orbital contributions. Magnetic dichroism is element
sensitive, due to the addressing of an electronic transition of a given element.
It is often implemented in the soft X-ray range, considering L transitions in 3d
materials (from p states to the d band), and M transitions for rare earth (from
p states to f states). The need to control X-ray energy requires the use of
synchrotron radiation.

The amount of absorption can be detected directly (transmission geometry),
or indirectly through fluorescence or photo-emitted electrons (total electron yield)
involved in de-excitation. In the soft X-ray range the latter two have a probing
depth limited by the mean free path of X-rays (a few tens to a hundred of
nanometers) and/or of the collected photons (a few to tens of nanometers), or
the mean free path of electrons (a few nanometers). Thus, it cannot probe bulk
samples, and is neither sensitive to only one atomic plane. It is therefore very
suitable to investigate thin films. In practice one often sets the energy of photons
at an absorption edge, proceeds to two countings with opposite helicities, and
computes the dichroic ratio (/. — /_)/(l+ +1_).

XMCD is often implemented under vacuum because soft X-rays are strongly
absorbed in air, and also when the detection involves the collection of electrons.
It can be combined with magnetic field, variable temperature, time-resolved
measurements based on stroboscopic methods and the temporal structure of
the orbiting particles in the synchrotron ring in well-defined packets. Used with
a white beam it is a magnetometry technique. Implemented with electron optics
or a small beam it provides a microscopy approach, as detailed in the next two
paragraphs.

{g_? X-ray magnetic linear dichroism (XMCD) also exists. It results from
the directional selection of certains orbitals based on electric dipole
selection rules. When magnetism has an orbital character XMLD allows
to probe the direction of magnetization, however not the pointing
direction. It is a technique which allows to probe domains of various

orientations in certain antiferromagnetic materials.
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Figure 1.11 - Photo-Emission Electron Microscopy. (a) PEEM-LEEM instrument
installed at the Nanospectroscopy beamline in Elettra synchrotron, Italy. The
sample and the entire imaging column are enclosed in ultra-high vacuum cham-
bers. The beamline with the X-ray optics coming from the synchrotron start at
the right of the image, extending twenty meters. (b) lllustration of the elemental
resolution: imaging magnetic domains at the Co and Fe edges at the same location
of a Al[3 nm]\FexoNigo[4 nm]\Al,O5[2.6 nm]\Co[7 nm] thin film with in-plane uniaxial
magnetic anisotropy[33], a stack that can be used as a magnetic tunnel junction.
Fe,oNig, is the top layer and Co is the buried layer.

@ X-ray magnetic dichroism can also be implemented with hard X-
rays, for example at the K edges of 3d elements. The magnitude of
dichroism is much less than at the L edges, however it is better suited
when very thick samples must be probed, because of the larger mean

free path of photons at these energies.

6.3.8 XMCD PHOTO-EMISSION ELECTRON MICROSCOPY

This technique collects the electrons photo-emitted following the dichroic ab-
sorption of X-rays, so again it is a synchrotron-based technique. An image is
built thanks to a complex electron column developed for the Low-Energy Electron
Microscope (LEEM). Electrons are accelerated into the column, and are converted
to an image on a fluorescent screen at the end of the column[31, 32]. XMCD-
PEEM has the same features as total electron yield XMCD: probing depth of a few
nanometers, elemental resolution, possible combination with time resolution.
However, it is very difficult to image under applied fields larger than a few mT,
because low-energy electrons are very sensitive to these.

As the imaging column is perpendicular to the sample surface, the incidence
of the X-ray beam is tilted for geometric reasons. Thus, what is probed is a
combination of an in-plane and the out-of-plane components of magnetization.
There now exist rotatable sample holders, which allow to separate the two in-
plane components, acquiring two successive images. The spatial resolution in
the best instruments and under optimum conditions is of the order of 25 nm.
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@ XMCD-PEEM is very important in nanomagnetism and spintronics, mak-
ing use of multilayered architectures, which can be probed separately if
they consist of different materials, thanks to the elemental resolution.

6.3.C XMCD TRANSMISSION X-RAY MICROSCOPY

Transmission X-ray Microscopy (TXM) is yet another technique based on
dichroism[34]. As the name suggests, this technique was introduced as a
transmission technique. The imaging capability is brought by Fresnel lenses'’3
positioned before and after the sample. There are two implementations, each
with spatial resolution around 20nm. In the Scanning mode (STXM) the first
Fresnel lens focuses the beam to a spot determining the resolution, while the
second Fresnel collimates the transmitted beam to collect it on a photodiode. In
the regular TXM mode the first Fresnel lens condenses the beam to define the
full field of view, while the second lens acts as an objective to make the gather in
the far field. STXM is better suited to perform local hysteresis loops because of
the high local intensity, while regular TXM is considered better suited for imaging
because it prevents artifacts arising from the scanning, such as drift-related.

(S)TXM offers more versatility for the sample environment than PEEM, be-
cause it is a photon-in photon-out technique; it is fully compatible with magnetic
field, and needs to be implemented in secondary vacuum only, not ultra-high
vacuum like LEEM. However, a constraint is the transmission geometry, requir-
ing to work on samples thinned like for transmission electron microscopy, or
deposited on thin X-ray transparent membranes such as silicon nitride. Note
that this condition is being lifted, with the emergence of instruments where the
detection scheme is fluorescence or total electron yield[35].

6.4 Scanning probe microscopies

These techniques are based on the local measurement of a property, performed
thanks to a local probe. The measurement spot is then scanned in a two-
dimensional fashion to construct an image. We consider the three such mi-
croscopies with magnetic capabilities, which have a large use and impact in
nanomagnetism (Figure 1.12).

13Fresnel lenses are made of successful ring-shaped strips of an X-ray absorbing material. The
strips have a width and are located at the locus of what would be the scattering pattern of a small
aperture. Following Babinet's reciprocal theorem, a collimated beam of X-rays shone on it focuses
part of the beam in the focal plane.
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6.4.A MAGNETIC FORCE MICROSCOPY

Magnetic Force Microscopy (MFM) is a technique mapping the stray field em-
anating from a sample, whose analysis allows one to infer the distribution of
magnetization inside the sample.

MFM is derived from Atomic Force Microscopy. Along with Kerr microscopy, it
is the most popular magnetic microscopy technique owing to its combination of
moderate cost, reasonable spatial resolution (routinely 25 — 50 nm) and versatil-
ity. Many reviews are available for both AFM[36] and MFM[27, 28].

AFM and MFM probe forces between a sample and a sharp tip. The tip is
non-magnetic in the former case, and coated with a few tens of nanometers
of magnetic material in the latter case. The forces are estimated through their
impact on the displacement or oscillation of a soft cantilever holding the tip,
usually monitoring the deflection of a laser reflected at the backside of the
cantilever. The most common working scheme of MFM is an ac technique: while
the cantilever is mechanically excited close to its resonance frequency f, (or more
conveniently written as the angular velocity w, = 27f,), the phase undergoes a
shift proportional to the vertical gradient of the (vertical) force 0F /0z felt by the
tip: 4p = —(Q/k)OF/0z. In practice magnetic images are gathered using a so-
called two-pass technique: each line of a scan is first conducted in the tapping
mode with strong hard-sphere repulsive forces probing mostly topography (so-
called first pass), then a second pass is conducted flying at constant height (called
the lift height) above the sample based on the information gathered during the
first pass (Figure 1.12). Forces such as Van der Waals are assumed to be constant
during the second pass, and the forces measured are then ascribed to long-range
forces such as magnetic.

The difficult point with MFM is the interpretation of the images, and the
possible mutual interaction between tip and sample. A basic discussion of MFM
is proposed in the Problems section, p.61. A summary of the expected signal
measured is provided in Table 1.4.

Table 1.4 - Simple models for MFM tips. Expected MFM signal with respect to
the vertical component Hy, of the stray field in static (cantilever deflection) and
dynamic (frequency shift during the second pass) modes versus the model for the
MFM tip.

Tip model Static response Dynamic response
Monopole Hy, OHy,/0z
Dipole OHq,/0z PHqy,/02%
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Figure 1.12 - Magnetic Force Microscopy (MFM). (a) View of an NT-MDT
AFM/MEFM instrument, with built-in in-plane 200 mT magnetic field (magnetic
circuit at the top part of the picture), and home-made stage for out-of-plane 1.1 T
magnetic field (bottom of the image). (b) Optical top-view of the cantilever (dark
part, laser focused close to its end) while imaging a patterned structure. (c) Typical
resonance curve of a cantilever used for MFM. (d) Scheme for the two-pass MFM
procedure. (e) 2 x 2pym MFM domain pattern of a 4 nm-thick epitaxial FePt(001)
film with perpendicular magnetization (sample courtesy: A. MARTY).

6.4.B  SPIN-POLARIZED SCANNING TUNNELING MICROSCOPY

Spin-polarized Scanning Tunneling Microscopy (sp-STM) is a unique technique
able to resolve the magnetic state at a surface, down to single atoms and
molecules (Figure 1.13).

Sp-STM is the magnetic implementation of the Scanning Tunneling Micro-
scope (STM). STM was invented by Binnig and Rohrer in 1982, who were awarded
the Nobel prize in 1986, recognizing the giant leap it enabled for the exploration
of matter at surfaces at the atomic scale. STM exploits the tunnel current flowing
between a sharp tip and the surface to investigate. It is therefore restricted to
imaging metals or semiconductors. Keys for sensitivity and spatial resolution are
the exponential variation of this current with tip-sample distance, and the small
distance itself, of the order of one nanometer.
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Figure 1.13 - Spin-polarized Scanning Tunneling Microscopy (sp-STM). (a) Set-
up allowing sp-STM, operating under ultra-high vacuum, at cryogenic tempera-
ture (7K) and variable field (up to 8T), installed at the Max-Planck Institut fur
Mikrostruckturphysik in Halle, Germany. The entire instrument is mounted on
damped supports in a shielded room to allow for the lowest perturbations to
achieve the highest sensitivity. (b) Close-up view of the tip and sample parts,
with typical size a couple of centimeters. (c) Example of topographic (top) and
magnetic (bottom) images of a self-assembled thin-film patch deposited on a
Cu(111) surface, made of a core of Co atomic bilayer (ferromagnetic), surrounded
by a bilayer Fe brim (with a helix spin structure)[39]. Courtesy: D. SANDER.

SpSTM consists of capping an STM tip with magnetic material[37]. The tunnel
current is sensitive to the respective orientations of tip and sample, so that a tip
magnetized in a given direction allows through scanning to derive a magnetic map
of the sample surface. It took close to an extra fifteen years after the invention of
the STM, to get a working spSTM[38]. The reason is that magnetic imaging relies
on fine spectroscopic analysis, requiring very sensitive and stable instruments,
work at cryogenic temperatures to avoid spin excitations at the sample of tip
location, and the need to develop tips with well-controlled magnetization.

The experimental constraints are severe, as detailed above, and the versatility
in terms of samples is moderate, as only single-crystalline samples grown and
investigated under ultra-high vacuum are eligible. Despite this, spSTM has
allowed key discoveries in nanomagnetism, thanks to its unique ability to resolve
the magnetic state of individual atoms and molecules. Breakthrough includes
the discovery of antiferromagnetic face-centered cubic iron, and peculiar periodic
spin textures such as cycloids and skyrmions[40]. The technique has also been
extended to manipulation, e.g. injection of spin-polarized current to switch
magnetization (chap.??), or inducing a magnetic phase transition with an electric
field[41].
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6.4.C  NV-CENTER MICROSCOPY

NV-center microscopy allows to measure quantitatively one component of the
stray field of a sample with an extreme sensitivity, down to single electron
spins[42].

The principle relies on a defect introduced on purpose in the structure of
diamond, consisting of a pair of a nitrogen atom and a vacancy. This combined
center is quantum in nature. It has a triplet state S = 1 with a splitting of the
states ms = 0 and ms = +1, which can be measured resonantly with a gigahertz
wave. The resonance peak is narrow and well-defined by the NV center. The
measurement can be performed at room temperature thanks to the low level of
decoherence in the diamond matrix. When the NV center is subject to a magnetic
field the degeneracy of the states ms = +1 is lifted, splitting the resonance
peak. The measurement of the splitting is a direct quantitative measure of the
component of magnetic field along a quantized direction set by the orientation
of the diamond material embedding the NV center. Scanning above a magnetic
sample thus allows to measure a map of its stray field with high accuracy and
quantitatively.

In practice, single defects in diamond nanoparticles are required, to be put
at the apex of an atomic force microscope for the combined magnetic and
topographic imaging. Although is suffers from the restriction to rather low fields
and more complexity than MFM, it has emerged as a very important technique in
recent years. It was used for example to resolve the internal structure of domain
walls in ultrathin films, discriminating Bloch walls from Néel walls (see chap.ll).
It is compatible with variable temperature, and with magnetization dynamics as
long as the frequency is much lower than the monitored microwave resonance.

6.5 Electron microscopies

Electrons are particles with both a spin and a charge, which can each be exploited
for magnetic imaging. Three main techniques exist, as described below.

6.5.A LORENTZ MICROSCOPY AND HOLOGRAPHY

Lorentz microscopy, and holography, are implemented in transmission electron
microscopes. They deliver quantitative maps of in-plane induction related to
thin samples and integrated along the beam path (including magnetization and
dipolar field), with a spatial resolution down to a few nanometers. Two different
principles are exploited.

In Lorentz microscopy one uses the Lorentz force, responsible for the deflec-
tion of the electron beam. A way to recover information about induction is to
use an off-centered aperture in the image plane to select only those electrons
with a given deflection, reflecting a given in-plane component of induction; this
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Sample

Lorentz lens
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Figure .14 - Lorentz Microscopy. Schematics for the (a) Foucault mode and
(b) Fresnel mode. (c) I?2TEM (Hitachi) microscope installed at CEMES laboratory,
Toulouse, specially designed for in-situ and interferometry measurements of mi-
cromagnetism at the nanoscale. Images of a flux-closure Co(0001) self-assembled
dot in the Fresnel mode, (d) under-focussed, (e) in focus, (f) over-focussed[43].

highlights domains, and combining several images with different positions of the
aperture a 2D map of induction can be reconstructed. Another way does not use
an aperture, but images made in slightly over- under-focused conditions, in which
case electron beams from neighboring domains with opposite magnetization
either overlap or split; this reveals domain walls, and reconstructions algorithms
allow to reconstruct the 2D map of in-plane induction (Figure 1.14).

In electron holography one uses the phase shift of the electrons, related to the
magnetic vector potential A projected and again integrated along the electron
path. As detectors are not sensitive to the phase of electrons, a special design
needs to be used: the beam having passed through the sample is recombined
with a reference beam to produce an interference pattern, from which the phase
shift through the sample can be extracted.

Both techniques have the constraint of thin sample, however they provide
several key advantages: they are quantitative; magnetic field can be applied from
zero up to several tesla; variable-temperature sample holders are available; their
spatial resolution is currently the highest among all microscopies, apart from sp-
STM. Developments are under way such as combination with GHz excitations and
pump-probe measurements for time resolution, or also vectorial tomography
(reconstruction of a 3D map of magnetization from a series of images measured
at different tilt angles of a sample)[44].
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Figure l.15 - Scanning Electron Microscopy with Polarization Analysis, or
spin-SEM. (a) Overview of the spin-SEM setup at the IBM research laboratories
in Zurich (courtesy R. Allenspach). The Mott detector is located in a separate
room, not seen here. (b) lllustration of the magnetic domain pattern imaged by
SEMPA (right) of a thin Co film deposited on a Cu(oo01) crystal and displaying a
regular array of holes, in a so-called antidot fashion (left, topographic view, the
bright areas highlighting the places where Co is missing)[45]. This system has a
fourfold magneto-crystalline anisotropy, and thus may display domains aligned
along four directions. The direction of sensitivity to the magnetization direction is
indicated with the arrow in the inset. Each image is 18 x 18 um.

6.5.B SCANNING ELECTRON MICROSCOPY WITH POLARIZATION ANALYSIS (SEMPA)

SEMPA is a powerful however not so widespread technique. It is based on a
Scanning Electron Microscope (SEM) and delivers 3D vectorial maps of surface
magnetization. It is also called spin-SEM[45].

As for SEM, a focused beam of non-spin-polarized electrons is scanned at the
surface of a sample; the difference with SEM lies in the fact that the electrons
arrive at the sample with nearly zero kinetic energy, so that it is mostly the
material electrons close to the Fermi level (responsible for ferromagnetism) that
matter. Although the beam is not spin-polarized as a whole, each individual
electron has a spin. The probability of absorption and reflection of an electron
on a ferromagnetic surface depends on its spin quantized along the direction of
magnetization of the sample, as the latter has a different number of occupied and
empty states in the two channels. As a consequence the reflected beam is highly
spin-polarized. The analysis of this polarization as a function of the position of
the beam on the sample, allows to make a map of magnetization (Figure 1.15).

The standard technique to analyze the polarization of electrons is a Mott
detector, based on the asymmetric scattering of electrons arriving at relativistic
energies on high spin-orbit-element surface such as tungsten, which are mea-
sured simultaneously with a several-quadrant detector. The weak point of the
technique is the low efficiency of detection, of the order of 1074. This raises con-
cerns of signal-to-noise ratio, which is what in practice limits the spatial resolution
to a few tens of nanometers. The strength of the technique is that the use of
detectors differently located in space reveal several component of magnetization.
Thus, a complete vectorial map of magnetization can be reconstructed. The depth
probed on the magnetic sample is a few atomic layers at most.
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The technique can be combined with variable temperature. Application of
magnetic field is more complex because of the deflection of electrons, however
small coils of millimeter size implemented in the proximity of the sample have
been demonstrated to allow imaging in field up to 100 mT[46]. The development
of novel detectors with increased efficiency could revive this technique[47].

6.5.C SPIN-POLARIZED LOW-ENERGY ELECTRON MICROSCOPY (SPLEEM)

The characteristics of SPLEEM are very similar to those of SEMPA, in that it
provides vectorial maps of surface magnetization.

SPLEEM is based on the LEEM microscope, described in the PEEM para-
graph (sec.6.3.b). The magnetic working principle is opposite to that of SEMPA.
Indeed, the beam of electrons sent to the sample is highly spin-polarized,
being produced by optical pumping of a GaAs cathod with circularly-polarized
light[48, 49]. Reflection at the sample surface is again spin-dependent, so that
beams with opposite spin values and identical intensity, are reflected as beams
with two very different intensities. Their difference is a direct probe of the
magnetic state of the surface. Manipulation of the spin state of the incoming
beam also provides the ability to measure vectorial maps. Note also that SPLEEM
is a full-field imaging, unlike SEM. Combined with the high spin polarization
of the incoming beam, this makes it a technique easier to use than SEMPA.
Nevertheless, only a handful of such instruments exist worldwide, especially due
to the complexity of the spin gun producing spin-polarized electrons at will.

SPLEEM has an ultimate resolution of the order of 10 nm, and probes a couple
of atomic layers. It is compatible with variable temperature, however as in PEEM
virtually no magnetic fields can be applied.

Summary

Magnetometry and magnetic imaging. Besides magnetometry, the emphasis has
been put here on magnetic microscopy, which plays a key role in nanomagnetism.
There is no universal and best technique, each having its advantages and drawbacks.
Criteria include spatial resolution, physical quantity probed, sensitivity, quantitative
or not, conditions that can be applied such as field or temperature, time resolution,
elemental sensitivity. The combination of several types of microscopies is sometimes
required to get the full picture of a situation.
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Problem 41: Self-testing

1. What is the scaling law for the long-range stray field arising from a magnetic
dipole?

2. Provide the definition and unit for a magnetic moment, and for magnetiza-

tion. How are they linked one with the other?

Which are the only three elements ferromagnetic at room temperature?

Provide the definition for coercive field and for remanence.

Name the four main contributions to the magnetic energy of a system.

ou bW

Provide the name and equation for a measure of the volume density of
magnetostatic energy in a given material.

What is the definition of stray field and demagnetizing field?
8. What is the definition of a demagnetizing coefficient?

~

9. What is a Bloch domain wall? Why is it considered as the domain wall of
lowest energy in a bulk ferromagnetic material?

10. Provide equations for the width and energy of a Bloch domain wall

Problem 2: Short questions

1. See Table 1.1. Write the mutual energy as a function of distance between
two magnetic charges Q, and that between two magnetic dipoles with
magnitude , aligned along their separation vector. Discuss the difference
in power law.

2. Provide the expressions for the dipolar exchange length 44, the anisotropy
exchange length 4, and the anisotropy field H, = 2K /11,Ms in the cgs system
(see problem on units for a detailed analysis).

3. Draw the equivalent magnetic charges and the magnetic fields resulting
from the distribution of magnetization in the four cases shown on Fig-
ure 1.16.

52
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Figure 1.16 - Magnetic charges, demagnetizing and stray fields (a) cross-
section of a uniformly-magnetized cube (b) side view of a perpendicularly-
magnetized thin film with infinite lateral dimensions (c) Cross-section of a cylinder
magnetized along a transverse direction (d) Top view of a thin and flat element
with very large lateral dimensions. (e-h) various sets of permanent magnets.

4. Demagnetizing coefficients. Provide the main directions for the following
geometries (make a sketch and label all three axes in each case): sphere,
cube, thin film, cylinder of infinite length, cylinder of finite length, thin flat
element with a circular shape, thin flat element with a rectangular shape,
thin flat element with a triangular shape. In each case provide figures
for all three demagnetizing coefficients, if available exactly, or inequalities
bounding them.

5. Provide the proof for the domain wall width formula given in sec.5.3: W,
W, W), We and Wy, both for the variational linear model, and the exact
profile [Eq.(l.41)].

Problem 3: Demagnetizing coefficients of composite
materials

This problem considers the estimation of the demagnetizing matrix N for
composite materials, a situation at first sight more complex than considered in
the main text, however conceptually covered by the concept thereby developed.
Let us recall this definition for a uniformly-magnetized body: < Hy >= —N - M.
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1. Consider a body with magnetization of modulus Ms, in which there exists

an empty cavity. Let us call N. the demagnetizing matrix of a particle
which would have the shape of the cavity. Sketch the distribution of
magnetic charges around the cavity for a given direction of magnetization,
and provide an expression for the dipolar field Hy. inside the cavity. This
situation is known as the Lorentz cavity. The effect of the outer shape of the
body shall for the moment not be considered, e.g. such as in the case of a
slab (thin film) with in-plane magnetization.

. We now consider a body made of a dilute assembly of magnetic particles

in a non-magnetic matrix, with porosity p defined as the fraction of volume
occupied by the particles. When one focuses on a given particle, the dipolar
field arising from all other particles may be calculated in a mean field
approach, coming from a body carrying magnetization with modulus pMs.
Let us call again N, the shape of the cavity of neighbors surrounding the
particle. Provide an expression for Hy. felt at the nanoparticle locus, as
arising from this cavity effect.

. Still for the body made of a dilute assembly of magnetic particles in a

non-magnetic matrix, consider now the superposition of all three effects:
the Lorentz cavity, the outer shape of the body with demagnetizing matrix
N,, the shape of each particle with demagnetizing matrix N,, the latter
assumed to all share the same tensor with no angular distribution of the
axes. Express the dipolar field Hq felt inside each nanoparticle, and derive
an expression for N defined as < Hy >= —N - M. Check that it fulfills Tr N = 1.

. Apply the above calculations in the following cases. For each case draw

a sketch, name the main axes, calculate the demagnetizing coefficients
along all three directions, and comment on the limiting cases p — o0 and
p — 1. Provide an expression for the angular variation of the density of
dipolar energy E4, and calculate the value of p for which the system behaves
isotropically.

(@) Spherical particles in a spherical body; the Lorentz cavity shall be
assumed to be spherical.

(b) Spherical particles in a slab (thin film). Discuss what proper choice
shall be made for the shape of the Lorentz cavity, in the case of slab
thickness much larger than the inter-particle distance.

(c) Close-to-infinitely-long cylinders packed in a thin-film body, with their
axis perpendicular to the film. Discuss what proper choice shall be
made for the shape of the Lorentz cavity, in the case where the film
thickness is much larger than the inter-cylinder distance.
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Problem 4: More about units

Here we derive the dimensions for physical quantities of use in magnetism,
and their conversions between cgs-Gauss and Sl.

4.1. Notations

We use the following notations:

« X is a physical quantity, such as force in F = mg. It may be written X for

vectors.

dim X is the dimension of X expressed in terms of powers of fundamental
dimensions, here length (L), mass (M), time (T) and electrical current (l). For
example, dimensions of speed and electrical charges read: dimv = L-T™'
anddimq =I-T. As a shortcut we will use here a vector matrix to summarize
the dimension of quantities, with components the powers of fundamental
dimensions; it will be written [X] for the dimension of X. The above examples
now read [v] = [L] - [T] =[10—-10]and [q] = [I] +[T] = [0 0 11]. We use
shortcuts [L], [M], [T] and [I] for the four fundamental dimensions.

In a system of units « (e.g. S| or cgs-Gauss) a physical quantity is evaluated
numerically based on the unit physical quantities: X = X,(X),. X, is a
number, while (X), is the standard (i.e., used as unit) for the physical
quantity in the system considered. For example (L) is a length of one
meter, while (L) is a length of one centimeter: (L)s; = 100(L)s. For derived
dimensions we use the matrix notation. For example the unit quantity for
speed in system a would be written (10—10),.

4.2. Expressing dimensions

Based on laws for mechanics, find dimensions for force F, energy € and
power P, and their volume density £ and P.

Based on the above, find dimensions for electric field E, voltage U, resis-
tance R, resistivity p, permittivity .

Find dimensions for magnetic moments u, magnetic field and magnetiza-
tion H and M, induction B and flux ¢, and permeability s,.

4.3. Conversions

Physics does not depend on the choice for a system of units, so doesn't any
physical quantity X. The conversions between its numerical values X, and X5 in
two such systems is readily obtained from the relationship between (X), and (X) 3.
In the cgs-Gauss system, the unit for length, mass and time are centimeter, gram
and second. The electric current may also be considered as existing and named
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Biot or abampere, equivalent to 10A. Thus we have the following conversion
relationships: (L)s; = 10%(L)gs. Similarly we have (M)s; = 103(M)cgs, (T)si = (T)ces
and (f)s; = 107" (/) cgs.

In practice conversion can be formally written the following way: X = X, (X), =
X3(X)s. Let us consider length / as a example. | = I5(L)s = lgs{L)cgs. From
the above we readily have: /5 = (1/100)/s. Thus the numerical value for the
length of an olympic swimming pool is 5000 in cgs, and 5o in Sl. For derived
units (combination of elementary units), (X),, is decomposed in elementary units
in both systems, whose relationship is known. For example for speed: (v), =
(L)a(T)a"

Exhibit the conversion factor for these various quantities, of use for mag-
netism:

« Force F, energy &, energy per unit area E, energy per unit volume E. The
units for force and energy in the cgs-Gauss system are called dyne and erg,
respectively.

« Express the conversion for magnetic induction B and magnetization M,
whose units in cgs-Gauss are called gauss and emu/cm3, respectively.
Express related quantities such as magnetic flux ¢ and magnetic moment p.

* Let us recall that magnetic field is defined in Sl with B = u(H + M), whereas
in cgs-Gauss with B = H + 47M, with the unit called cersted. Express the
conversion for u, and comment. Then express the conversion for magnetic
field H.

+ Discuss the cases of magnetic susceptibility and demagnetizing coefficients.
In Sl these are defined by x = dM/dH and Hqy = —NM. What should be their
definition in the cgs-Gauss system so that these dimensionless quantities
have the same numerical value in both systems? Notice that definitions
sometimes used in the cgs-Gauss system are: Hy = —47NM and Hy = —DM.

Problem 5: More about the Bloch domain wall

The purpose of this problem is to go deeper in the mathematics describing
the textbook case of the Bloch domain wall discussed in sec.5. The first section is
mainly mathematics and may be skipped if desired.

5.1. Euler-Lagrange equation

We will seek to exhibit a magnetization configuration that minimizes an
energy density integrated over an entire system. Finding the minimum of a
continuous quantity integrated over space is a common problem solved through
Euler-Lagrange equation, which we will deal with in a textbook one-dimensional
framework here. Let us consider a microscopic variable defined as E(f, df/dx),
where x is the spatial coordinate and # a quantity defined at each point. In the
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case of micromagnetism we will have:

dé do, 1°
E [Q(X), &(X)] =A {&(X)} + E,[0(x)] (1.43)
When applied to micromagnetism E,(f) may contain anisotropy, Zeeman and
dipolar terms (the latter taken as local through the hypothesis of demagnetizing
coefficients or other approximations). We define the integrated quantity:

X dé
o] = / E [Q(X), &(X)] dx + E4 [0(xa)] + Eg [0(X)] - (l.44)

A and B are the boundaries of the system, while E4(0) and Eg(#) are surface
energy terms. These may stem from, e.g., surface magnetic anisotropy, or the
Dzyaloshinskii-Moriya interaction. Let us now consider an infinitesimal function
variation 660(x) for 6. Show that extrema of € are determined by the following local
relationships:

oF_d (oE) _ ”
9 dx\o%) = 5
de,  OF
L (1.46)
do 0%,
des  OF
oo = o (1.47)
do " 9% |

Note that equations Eq.(1.46) and Eq.(l.47) differ in sign because a surface quantity
should be defined with respect to the unit vector normal to the surface, with a
unique convention for the sense, such as the outwards normal. Here the abscissa
x is outwards for point B however inwards at point A. An alternative microscopic
explanation would be that for a given sign of df/dx the exchange torque exerted
on a moment to the right (at point B) is opposite to that exerted to the left (at point
A), whereas the torque exerted by a surface anisotropy energy solely depends on
6.

5.2. Micromagnetic Euler equation

Apply the above equations to the case of micromagnetism [Eq.(l.43)]. Starting
from Eq.(l.45) exhibit a differential equation linking E,(f) with df/dx. Equations
l.46-1.47 are called Brown equations. €4(f) and Eg(A) may be surface magnetic
anisotropy, for instance. Discuss the microscopic meaning of these equations.
Comment the special case of free boundary conditions (all bulk and surface
energy terms vanish at A and B), in terms of energy partition. Show that € can
be expressed as:
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Figure 1.17 - Bloch domain wall profile: the exact solution (green dots) versus the
asymptotic profile (red line). The solution with linear ersatz is shown as a dark line.

6(xs)
elo] = 2/ VAE,(6) dod (1.48)
0

(Xa)

5.3. The Bloch domain wall

Let us assume the following free boundary conditions, mimicking two ex-
tended domains with opposite magnetization vectors separated by a domain
wall whose profile we propose to derive here: §(—oc) = 0 and 6(+oc) = m. We
will assume the simplest form of magnetic anisotropy, uniaxial of second order:
E(0) = K, sin* 4.

Based on a dimensional analysis give approximate expressions for both the
domain wall width § and the domain wall energy €. What are the Sl units for £?
Discuss the form of these quantities in relation with the meaning and effects of
exchange and anisotropy.

By integrating the equations exhibited in the previous section, derive now the
exact profile of the domain wall:

f(x) = 2arctan (exp %) (1.49)

and its total energy €. 4, = \/A/K, is the anisotropy exchange length.

The most common way to define the Bloch domain wall width dg is by
replacing the exact 6(x) by its linear asymptotes (red line on Figure 1.17). Derive
0gl as a function of A,.

Let us stress several issues:

+ The model of the Bloch wall was named after D. Bloch who published this
model in 1932[50].
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* As often in physics we have seen in this simple example that a dimensional
analysis yields a good insight into a micromagnetic situation. It is always
worthwhile starting with such an analysis before undertaking complex
analytical or numerical approaches, which especially for the latter may hide
the physics at play.

+ We have exhibited here a characteristic length scale in magnetism. Other
length scales may occur, depending on the energy terms in balance. The
physics at play will often depend on the dimensions of your system with
respect to the length scales relevant in your case. Starting with such an
analysis is also wise.

+ When the system has a finite size the anisotropy and exchange energy do

not cancel at the boundaries. The integration of Euler’s equations is more
tedious, involving elliptical functions.

Problem 6: Extraction and vibration magnetometer

6.1. Preamble

Here we consider the principle of extraction magnetometry, either in full
quasi-dc extraction operation, or in the vibration mode (Vibrating Sample Mag-
netometer, VSM). Their purpose is to estimate the magnetic moment held by
a sample, possibly as a function of field, temperature, time etc. The general
principle is to move a sample along the axis of a coil of radius R. This induces
a change over time of the flux in the coil, arising from the sample, which may
be measured thanks to the induced electromotive force (EMF)'4. In a so-called
extraction magnetometer the sample is moved sufficiently away from end to the
other along the axis so as to nearly cancel the flux, resulting in an absolute
measurement of the flux. In a vibrating sample magnetometer the sample
vibrates along the axis at several tens of hertz close to the coil, inducing a large
EMF and opening the use of a lock-in technique to further reducing the noise,
however the full extraction curve is not measured, resulting in higher sensitivity
to artefacts, as will be discussed below.

6.2. Flux in a single coil

Based on the Biot and Savart formula, express as a vector the induction B(z)
arising along the axis of a circular coil of radius R with electrical current /. Below
is reminded the Biot and Savart formula expressing at an arbitrary location M in
space the infinitesimal induction B arising from a current / on an infinitesimal

4An alternative and very sensitive device for measuring the flux through a coil is SQUID:
Superconducting Quantum Interference Device.
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element 4/ at location P :
_ 1oldI(P) x PM

4mPM3

For reaching a high sensitivity the coil is wound several time, N > 1. In the
following we will assume N = 1000 for numerics. We will assume here that
the location of all loops is the same. Based on the reciprocity theorem for
induction, derive the magnetic flux @(z) in the series of coils, arising from a
pinpoint magnetic moment y located on the axis of the coil. ®(z) will be expressed
as ®(z) = Kf(z), with f(z) a dimensionless function. Draw a schematics of f(2)
Numerics: what is the uniform magnetic induction that would be required to
create a flux in these coils, equivalent to that of a square piece of thin film of
iron of lateral size 1cm and thickness 1 nm (reminder: the magnetization of iron is
~ 1.73 x10° A/m). Comment with respect to the magnitude of the earth magnetic
field.

6.3. Vibrating in a single coil

OB (I.50)

The sample is now moved periodically along the axis of the coil, around the
location z,: z(t) = z, + Az cos(wt). Based on a first-order expansion in Az/z,, derive
the EMF e(t) induced in the coil. Draw a schematics of this curve. At which position
is found the maximum of magnitude for e(t)?

Numerics: calculate the magnitude of e(t) arising from the iron thin film men-
tioned above with a frequency of 30Hz and Az = 1mm. Comment about this
value.

6.4. Noise in the signal

Owing to a mechanical coupling the coils for measurement vibrate with
angular frequency w in the supposedly static induction B applied to magnetize the
sample. Let us assume that due the coils’ imperfections or finite size this induc-
tion displays an inhomogeneity 4B at the spatial scale for vibration of the sample.
Derive the EMF induced in the measuring coils due to this inhomogeneity.

Numerics: vibration of magnitude 1 um in an induc-
> tion of strength 1T, with a relative change of 1073
over a distance of 5 mm. Comment the value.

6.5. Winding in opposition

= ~—— Sample The above noise can be reduced by using two
coils with same axis, measured in series however
wound in opposite senses (Figure 1.18). The mea-
sured EMF is then ey(t) = e,(t)—e,(t), and the sample
is vibrated at equal distance from the two coils, at
Sample the position z, such that the signal is maximum
L] holder (see above). Why is the above noise significantly
Figure 118 - Coil com- reduced? Comment this setup with respect to the

pensation in magnetome-
ters. Geometry for two
coils winded in opposite di-
rections

ik )
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Helmoltz geometry for two coils.

Problem 7: Magnetic force mi-
croscopy

This problem is an extension of the short para-
graph about magnetic force microscopy in this
chapter. This paragraph should be read first, before

addressing this problem.

7.1. The mechanical oscillator

The dynamics of the AFM cantilever is modeled by a mechanical oscillator:

d*z _dz
m— +I— +k(z—2,)=F(z,t .51
gt g ka2 = Fz.) (1.51)
F(z,t)is a force arising from either the operator or from the tip-sample interaction,
and z, is the equilibrium position without applied force. m, I and k are the
oscillator mass, damping and stiffness, respectively. We use the notation w, =

Vvk/mand Q = vVkm/T, the latter being called the quality factor.

Rewrite Eq.(I.51) with the use of w, and Q. The cantilever is excited by the
operator with F(t) = Fe€*'. Provide the transfer function H = z/F, the gain G =
|H| and phase shift ¢ = arg(H), as well as the following quantities, at resonance:
angular velocity w,, magnitude z, and phase ¢,. For the case Q > 1 calculate the
magnitude at resonance, and the full-width at half maximum (FWHM) Aw, of the
resonance peak. Comment.

7.2. AFM in the static and dynamic modes

The cantilever is brought in the vicinity of the surface, inducing a non-zero
force F(z) between the tip and sample, adding up to the sinusoidal from the
operator. For the sake of simplicity we will model the variations of F using a
simple affine function: F(z) = F(z,) + (z — z,)0F / 0z.

Calculate the new position at equilibrium zeq. Rewrite Eq.(1.51) in this case,
and in the case Q > 1 the normalized change of resonance angular velocity
dwr/wo. IN Most cases the cantilever is excited at a constant frequency wex. and
the force gradient is monitored through the change of phase 4p. Show that
Ap = —(Q/k)OF /0z.

7.3. Modeling forces

We assume here that the magnetization configurations of both the tip and the
sample are not influenced one by another. The vertical component of the force
applied by the sample on the tip is F = —0€/0z, where £ is the mutual energy. The
tip may be modeled either by a magnetic dipole u, or by a magnetic monopole
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q) (in practice tips may be modeled by a linear combination of both components).
For both models express to which z derivative of the vertical component of the
sample stray field Hq, are proportional the deflection in the static AFM mode, and
the frequency shift in the dynamic AFM mode.

Numerical evaluation - A typical MFM cantilever has Q = 1000 and k = 4 N/m.
Modeling both the tip and samples by a magnetic dipole made of Co with a
diameter 25nm, and assuming a probing distance of 50 nm, provide a crude
estimate of the frequency shift expected. Comment.



Chapter Il

Magnetism and magnetic domains
in low dimensions

Overview

In the previous chapter we have recalled basic knowledge about magnetic materials.
However, both their microscopic and micromagnetic properties depend on the
dimension and size of the system considered, because of geometrical reasons or
related to characteristic length scales to be compared to the system’s dimensions.
This chapter covers the impact of dimensionality and dimensions on all aspects
which matter in nanomagnetism: magnetic ordering, magnetic anisotropy, domains
and domain walls. While thin films are a textbook case of reduction of dimensionality
easy to consider due to the translational symmetry, we also progressively cover the
case of nanostructures. This chapter is concerned with static properties only. The
impact of dimensionality on magnetization reversal, dynamics and spintronics are to
be found in the following chapters.

63
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1 Magnetic ordering in low dimensions

1.1 Ordering temperature

The main feature of a ferromagnetic body is spontaneous ordering below a critical
temperature T¢, called Curie temperature. It was Weiss who first proposed a
mean-field approach to describe the ordering. In this theory it is postulated that
the local moments feel an internal magnetic field

H, = nywM. + H (I1.1)

where H is the external field, and nwMjs is the co-called molecular field. This
is @ phenomenological representation of magnetic exchange, whose quantum-
mechanical origin was not known at the time. A semi-classical description allows
to link the Heisenberg hamiltonian H = —23",_ ;5.5 with ny:

27);; = ponwng; g’ (1.2)

where Z is the number of nearest neighbors, n the volume density of sites, each
holding a dimensionless spin S bounded between —/ and +/, associated with total
magnetic moment y; = gJug''. Based on the site susceptibility related to the
Brillouin function B, the expected ordering temperature may be expressed as:

_2Z)J( +1)

T
¢ 3ks

(11.3)
The expected Curie temperature is therefore proportional to Z. Let us now draw
trends for the Curie temperature in low dimensions. To do this we consider a thin
film as a model system, and extend the mean-field approach to averaging the
number of nearest neighbors over the entire system. For a film with N layers of
sites with magnetic moments we get: Zy = Z + 2(Zs — Z)/N where Z; is the number
of nearest neighbors of each of the two surface/ interface layers (Figure Il.1a).
As Z; < Z we immediately see based on Eq.(Il.3) that the ordering temperature
should be reduced. The decrease follows the law Tc(t) = Tc(oco) —ATc(t) with a AT ~
1/t, with t the film thickness. Our hand-waving considerations are confirmed by a
more rigorous layer-dependent mean-field theory[51]. Going beyond mean-field,
one may find other critical exponents \ for T¢c ~ t=*.

As a rule of thumb, following Eq.(Il.3) Tc should be decreased to half the bulk
ordering temperature for N equaling one or two atomic layers. Figure Il.1b-c
shows the My(T) variation and the Curie temperature measured for several types
of ultrathin films, where the latter prediction appears largely valid, although the
scaling law is best fitted with A =1.27 + 0.20.

Finally, the My(T) law again depends on the model used (dimensionality, type

"Beware of this local possible confusion between the exchange constant, and the total angular
momentum J.
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Figure Il.1 - Magnetic ordering in low dimensions, here with N = 5 atomic layers.
(a) Counting the reduced average number of nearest neighbors in a thin film with
N atomic layers. Example of an experimental determination of (b) the temperature
dependence of magnetization and (c) the Curie temperature in various ultrathin
film materials[52].

of moment, ordering model), and so do critical exponents in both limits of T — 0"
and T — T~ . In the low temperature range the decay is dominated by spin waves
and follows a Bloch law:

M(T) = My(T = 0 K)[1 — byT3/%] (1.4)

whereas mean-field theory predicts an exponentially-weak decay. by is the spin-
wave parameters, which again happens to be thickness-dependent and well fitted
with a 1/t law[52]. The case of a truly two-dimensional system should clearly
be treated on a different footing due to the absence of out-of-plane excitations.
While Onsager derived an expression for the finite Curie temperature in a 2D
array of Ising spins[53], the Mermin and Wagner theorem states that long-
range ordering is not expected to occur at finite temperature for a 2D array of
Heisenberg spins; the divergence of susceptibility is found only for T — 0K.
This problem has long excited experimentalists, with no report of absence of
ferromagnetism in any experimental 2d system. The reason is that an energy
gap is opened in the spin-wave spectrum as soon as magnetic anisotropy sets in,
of magnetocrystalline origin[54] or even simply magnetostatic[55].

@, Promotion of magnetic ordering in low dimensions. Said in a hand-
waving fashion, any source of anisotropy mimics Ising spins at suffi-
ciently low temperature, going in the direction of the Onsager solution.

In one dimension thermal fluctuations have an even stronger impact, leading
to absence of ordering at any finite temperature even for Ising spins. Thus
the correlation length is not expected to diverge until truly zero temperature.
Experimental results pertaining to such systems are available and indeed points
at the existence of finite-size spin blocks[56].
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Figure 1.2 - Band ferromagnetism at interfaces. Schematics of the effect of
band narrowing on Stoner criterion and the magnitude of the magnetic moment.

1.2 Ground-state magnetic moment

Here we discuss the magnitude of the ground-state spontaneous magnetization
at zero temperature. The case of itinerant magnetism in 3d metals is particularly
well documented, and the general trend is physically interesting. Let us consider
the case of a free-standing layer, i.e. with no supporting nor capping material.
Due to the loss of coordination at both surfaces, 3d bands are expected to
narrow (Figure I.2). As the total number of electrons is conserved this should
help satisfying Stoner criterium 1 — Ip(eg) < 0 where [ is the exchange integral and
pleF) the density of electrons for each spin channel. This in turn should enhance
the imbalance of the number of occupied states in both spin channels, and thus
magnetization. This trend may be understood as moving towards free electron
magnetism where Hund's rules apply and orbital momentum is not quenched,
hence giving rise to a larger magnetic moment per atom. In most systems this
trend is confirmed through ab initio calculations and observed experimentally[52].
Exceptions (reduction of moment with respect to the bulk) may be explained by
phenomena whose consequences are more difficult to predict such as epitaxial or
surface strain, dislocations, hybridization and charge transfer with an interfacial
material, quantum-size effects.... Mainly the latter play a role in more localized
magnetism, leading to effects more difficult to predict.

Thin films are easy to model and simulate thanks to translational invariance.
However low-dimensional effects arise equally in other systems such as clusters.
The magnetic moment per atom has been measured to be clearly enhanced in
these, evidenced in-flight with Stern-Gerlach experiments or capped with sensi-
tive techniques such as XMCD[57]. The Stoner criterium may even be fulfilled in
clusters, while it is not in the bulk form. A famous case is Rhodium[58, 59].
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Summary

Magnetic ordering in low dimensions. We have reviewed the basics of ferromag-
netic ordering in low dimensions for itinerant magnetism. The general trend is that
of two competing effects. The zero-temperature ground state displays a moment
generally larger than that of the bulk, due to band narrowing. An opposite trend,
which is the one of highest importance, is the enhanced decay of magnetization
with temperature. At finite temperature both effects compete, requiring care in the
analysis of measurements.

2 Magnetic anisotropy in low dimensions

We first consider magnetostatic anisotropy, long-ranged and related to the outer
shape of a system. We then consider the magnetic anisotropy of microscopic
origin, arising from spin-orbit and the crystal electric field. These are magne-
tocrystalline and magnetoelastic anisotropies, which were introduced in sec.3.
We consider thin films as a model system, however those concepts apply to all
low-dimensional systems, however in a more complex manner.

2.1 Dipolar anisotropy

In sec.4.3 we introduced the concept of demagnetizing factors. These were
calculated on the assumption that the system under consideration is uniformly
magnetized. Although this may be questionable in some cases even under
applied field, in the present section we will rely on these factors for a first
discussion. In this framework we have seen [Eq.(I.30)] that the dipolar contri-
bution to magnetic anisotropy reads, after proper diagonalization defining the
so-called main directions of anisotropy: Eq4 = KqN;m?, and the internal so-called
demagnetizing field reads Hy = —N,-Msm,-f, where /i runs over all three main
directions, and Ny + N, + N, = 1.

For thin films N, = N, = o along the two in-plane directions, resulting in zero
demagnetizing field and demagnetizing energy. N,=1, resulting in E4 = Ky and Hq =
—M;Z for perpendicular magnetization. The resulting demagnetizing induction
1oMs is of the order of one tesla for common materials (Table I.2).

? In-plane magnetization for thin films. Unless the material displays a

very large microscopic energy, or a very strong field is applied perpen-

dicular to the plane, the magnetization of a thin film lies preferentially
in-the-plane.

For cases other than films, however of reduced dimension in at least one
direction, we will speak of nanostructures. The demagnetizing factors are all
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three non-zero, and again if no microscopic energy or applied field applies, the
magnetization will have a tendency to point along the direction with the lowest
demagnetizing factors.

Let us add a fine point often subject to controversy, however of great im-
portance for domains and magnetization reversal in nanostructures: the range
of dipolar interactions. Dipolar interactions are commonly described as long-
ranged. This is so because the stray field from a magnetic dipolar decays
with distance like 1/r3. Thus, an upper bound for the stray field at a given
location is of type [(1/r3)4mr*dr, summing over the entire system magnitudes
instead of vectors. This diverges logarithmically (however converges if vectors
are considered instead of magnitudes), revealing the long range of dipolar fields.
More precisely, it is straightforward to show that what matters is the solid angle
under which a surface density of charges is seen, not its distance. Let us now
consider a flat system, for instance an element patterned out of a thin film with
lithography. The upper bound becomes [(1/r3)2nrdr, which converges to a finite
value with a radius of convergence scaling with the sample thickness. In other
words:

Range of dipolar interactions. Dipolar energy is short-ranged in two

~dimensions. This can be understood in a hand-waving manner as most
of stray fields escape in the third dimension, not contributing to the
self energy —(1/2)110Ms - Hgq. This implies that stray- and demagnetizing
fields are often highly non-homogeneous, with important consequences
on both magnetization patterns and magnetization reversal processes.
For the same reason, the concept of demagnetizing factors and energy
shall be used with great care in such cases.

Ellipses versus ellipsoids. Elements with two flat surfaces (made out

~of a thin film) and with a circular or elliptical shape are not ellipsoids.
/ Their demagnetizing field is therefore highly non-uniform, as for all flat

elements.

2.2 Projection of magnetocrystalline anisotropy due to dipo-
lar energy

One consequence of magnetostatic energy is to favor the alighement of mag-
netization in directions with small demagnetizing coefficients. If magnetostatic
energy prevails over magnetocrystalline anisotropy energy, the magnetization will
tend to lie in certain planes or directions imposed by the former, while the latter
will play a role only through its projection in these planes or directions. Let us
consider the example of a cubic material; its magnetocrystalline anisotropy is
described by Eq.(I.8), whose magnitude is measured through the parameter K,.. If
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[100]

Figure I1.3 - Crystal directions for the (110) texture. Definition of axes for a cubic
crystal projected along the (110) plane.

K.c is much smaller than Ky then the direction of magnetization will be imposed by
the latter, for instance in-the-plane for a thin film (sec.4.3). As an example, let us
consider a cubic crystal cut along a (110) plane as shown on Figure 1.3, with (6, )
spherical coordinates. 6 is measured with respect to the axis perpendicular to the
plane, while ¢ is the in-plane angle. When restricted to 6 = 90°, Eq.(1.8) reads:

1
Emc,cub = Kic sin? p+ (_ZKK + Zch + K3c) sin® pt... (11.5)

Then, the effective anisotropy in the plane becomes uniaxial.

Symmetry and reduction of dimensionality. We illustrated a fea-
( \ ture of symmetries with application to many fields in physics, such
\/ as bulk versus surface crystallography: considering a function defined
in a space with d dimensions and displaying certains symmetries, its
projection or restriction into a sub-space of dimension lower than d

does not necessarily preserve or restrict the initial symmetry, even if
the sub-space is an element of symmetry of the initial function.

2.3 Interface magnetic anisotropy

The local environment of atoms differs at both surfaces of a thin film with respect
to the bulk one. In 1954 L. NEEL suggested that this breaking of symmetry induced
by the loss of translational invariance along the normal to the film, should result
in an additional term to magnetic anisotropy. This was well before technology
enabled to produce films so thin and well characterized that experiments could
suggest the effect. This additional term is called surface magnetic anisotropy, or
interface magnetic anisotropy, or also Néel magnetic anisotropy'-2.

2In principle interface is appropriate to describe a thin magnetic film in contact with another
material while surface is appropriate to describe a free surface (in contact with vacuum). This
latter case is in principle restricted to fundamental investigations performed in situ in UHV, where
a surface may remain free of contaminant for some time. In practice, both terms are often used
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As for magnetocrystalline anisotropy, in-
terface anisotropy may favor an easy direc-
tion or an easy plane, and be decomposed in
angular terms with various orders. As it ap-
plies only once per each interface, its effects
becomes vanishingly small at large thick-
ness. In practice it is observed that its effect
becomes negligible beyond a few nanome-
ters. One speaks of ultra thin films in
this range smaller than characteristic length

scales, where magnetization is obviously al-

N lowed to vary along the thickness. At a given

lateral position its magnetization'3 may be

1/D described as a single vector, the so-called

. . macrospin, on which apply both surface and

Flg_ure -4 . Pgrpendlcular bulk magnetic anisotropy. As a simple ex-
anisotropy. A historical example )

of 1/t plot for evaluating interfacial ~ @mple let us assume that both terms are

anisotropy[60]. uniaxial along the same axis, with two iden-

tical surfaces. The resulting anisotropy then

reads K,t + 2K with K, and K the volume and surface contributions. The effective

density of energy thus reads:

48MN/S2Fe
()

Tlo
< 05

D

Keir = K, + ZTKS (11.6)
Following this, the usual way to estimate K in theory and experiments is to plot
Kefe versus 1/t. The intercept with the y axis should yield the bulk anisotropy, while
the slope should yield Ks (Figure 1l.4). Interfacial anisotropies between various
types of materials have thus been tabulated[52, 61] (Table 11.1). K; indeed depends
on the material, may be of different sign, and is of the order of 0.1mJ-m~2. How-
ever, consider these numbers as indications. We will indeed see in the following
the complexity of the underlying physics, which induces a subtle dependence on
slight variations of the material structure, interfaces, stress etc.

In its 1954 model Néel proposed the estimation of an order of magnitude for
Ks values, based on the phenomenological analogy between removing the atoms
to create an interface, and pulling them away infinitesimally. Ks was then linked
with magneto-elastic constants of the material, with surprisingly good agreement
on the order of magnitude, although the exact value and even the sign may be
wrong. The so-called pair model of Néel aims at describing the direction and
material-dependence of surface anisotropy by counting the bounds between a
surface atom and the neighbors, and associate them with a uniaxial angular
function.

Theory can also be used to evaluate K values. Letting aside ab initio calcu-
lations, for 3d metals tight binding links magnetocrystalline anisotropy with the

interchangeably
3More precisely its moment per unit area, thus expressed in amperes
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Table Il.1 - Tabulated indications of values of interfacial anisotropy K

(mJ)/m?3)[61].
Co Fe Ni
Ag 0.22+0.07 0.4+0.1 —0.1
Au 0.5+01 0.6+t0.2
Cu 0.154+0.05 0.4+0.2 —0.2%0.1
Gr 0.15
Ir 0.8
Pd 0.54+0.8 0.2+01 0.35%40.1
Ru —.45+0.05
W —0.45=+0.15 —1.9

anisotropy or the orbital magnetic moment. For a uniaxial anisotropy the energy
per magnetic atom is:

K= aiﬂm. (1.7)
4/

¢ is the spin-orbit coupling, defined by contribution —¢S.L to the Hamiltonian. Ay
is the difference of orbital magnetic moment between hard and easy directions,
and « is a factor close to unity and only weakly related with the details of the band
structure.

In bulk 3d metals the orbital momentum is nearly fully quenched because
crystal electric field energy dominates over spin-orbit, and eigen functions in
a cubic symmetry should have nearly zero orbital momentum. Thus Ay, are
very weak, typically of the order of 1074 ug/atom, yielding K ~ 104)/m3. At
both surfaces and interfaces this anisotropy is enhanced close to 0.1ug/atom,
inducing an anisotropy of energy of the order of 1meV per surface atom, which
lies close to 1mJ/m?. The link between surface magnetic anisotropy and Ay, has
been checked experimentally and by ab initio calculations to be essentially valid.
Some experiments hint at a quantitative link between bulk and surface magnetic
anisotropy[62], however the universality of this link remains speculative.

The most dramatic consequence of surface magnetic anisotropy, with also
of technological use, arises when K favors the alignement of magnetization
along the normal to a thin film : E; = K cos?*(f) with Ks < o and 6 the angle
between magnetization and the normal to the film. If K¢, defined in Eq.(I1.6),
is negative and becomes greater in absolute value than Ky for a realistic critical
value of thickness t., magnetization will point spontaneously along the normal
to the film. This is perpendicular magnetic anisotropy (PMA). For a long time
the most efficient interfaces to promote PMA combined 3d elements for the
ferromagnet, and a heavy element to bring in spin-orbit. Prototypical examples
are Co/Au, Co/Pt and Co/Pd. t. is of the order of 2nm or less. Recently even larger
contributions to perpendicular anisotropy, and thus larger critical thicknesses (up
to 3.5nm), have been reported at the interface between 3d metals and oxides,
with the prototypical case of Co/MgO. If films thicker than this are needed with
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perpendicular magnetization, a route is the fabrication of multilayers[61].

@ Perpendicular magnetization for technology. Perpendicular mag-
netization has become very important for storage applications, such
as hard-disk drives (introduced in 2005 in shipped products), and the
emerging solid-state magnetic random access memories (MRAM). First,
it allows to define a unique direction of easy axis, unlike the case of
anisotropy for planar magnetization, relying on textured materials with
planar-isotropic grains, or elements of elongated shape however with an
unavoidable lithography-related spread of orientation. This reduces the
distribution of properties, which is crucial for the proper functioning of
a device. Second, it allows to increase the strength of anisotropy, which
provides the energy barrier promoting the long-term conservation of
information. The latter is particularly true for shape anisotropy , which

in practice cannot exceed much 10 % of Ms in planar flat elements.

2.4 Magnetoelastic anisotropy

The concept of magnetic surface anisotropy has been presented above as a
textbook case. In fact it is not the single source of modification of magnetic
anisotropy in ultrathin films. We review here an equally important source,
magnetoelastic anisotropy.

In the bulk form strain may be obtained through stress applied by an external
user. Strain is always present in thin films to some extent even at rest. This is due
to the effect of the supporting material (and to some smaller extent the capping
material), which having a lattice parameter and possibly symmetry different from
that of the overgrown magnetic material, stresses the latter. Stress may also
appear upon cooling (resp. warming up) thin films fabricated at high (resp. low)
temperature. This results in a strain field in the magnetic film, generally not
uniform, which gives rise to a magnetoelastic contribution to the total MAE.

@,\, Strain and stress. One should not confuse strain with stress. The
former is the deformation, the latter is the force per area, related to
the strain.

To first order magnetoelastic anisotropy is proportional to the matrix ele-
ments of strain. Group theory predicts the type of coupling terms[63], not their
strength. In thin films there clearly exists an asymmetry between out-of-plane
and in-plane directions: stress is applied in the latter, while along the former the
film is free to relax. This results in a uniaxial magnetoelastic contribution.

Let us understand the qualitative effect of magnetoelasticity in thin films using
a simple model. We consider the epitaxial growth of a film material (lattice
parameter as) on a substrate (lattice parameter a;), the latter being assumed
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to be rigid. The lattice misfit is defined as = (ar — as)/as. During growth the
deposited material will tend to relax its strain ¢ = (a — af)/as through, e.g., the
introduction of interfacial dislocations. We further assume that the linear energy
cost per dislocation k does not depend on the density of dislocations, and that
each dislocation allows the coincidence of N+1 atoms of the film with N substrate
atoms (resp., the reverse), which corresponds to negative (resp. positive) .
Working in a continuum model, the density of mechanical energy of the system
is:

Erec = 1C4 X lpte— e (11.8)

2 tas

where t is the film thickness and C an elastic constant. The equilibrium value for
a is found through minimization of this equation with the constraint |e| < |n|:

* Below the critical thickness t. = k/(asC|n|) the introduction of dislocations is
unfavorable, and a = as. The layer is said to be pseudomorph. As a rule of
thumb, t. ~ 1nm for n ~ 2 — 5%. This value is however dependent on the
crystal symmetry, growth temperature and technique of deposition.

* Above t. dislocations are created and allow to reduce strain like: |e(f)| =
k/(asCt).

What we have described so far is a structural model, proposed in 1967
by Jesser[64]. In 1989 Chappert et Bruno applied this model to magneto-
elasticity[65]. They considered linear magneto-elastic terms'4. As a simple case,
let us assume that all deformations may be expressed in terms of ¢, so that
Emel = Be with B a coupling constant. Based on the structural model of Jesser we
derive: Kne = kB/(asCt). Beyond the pseudomorphic regime we therefore expect
a dependence of Ky with 1/t, thus exactly like for a contribution of magnetic
interface anisotropy. In most cases magneto-elasticity and surface anisotropy are
intermingled in thin films; it is almost impossible experimentally and conceptually
to disentangle them. Nevertheless, it remains common to designate as surface
anisotropy the total effective contribution revealed as a 1/t variation of the density
of magnetic anisotropy.

2.4.A  ANISOTROPY RESULTING FROM THE SYNTHESIS PROCESS

Following the above, it might be expected that beyond a few nanometers of
thickness, the anisotropy of thin films is similar to that of bulk. While this is
often the case, there are cases of persistence for large thickness of a magnetic
anisotropy different from the bulk one.

A first reason is that the Jesser model considers the minimum of energy. In
practice this minimum may not be reached perfectly due to the energy barriers
required to create dislocations, and it is often the case that thin films retain a
fraction of percent of strain. The exact value strongly depends on the couple

4]t was recently shown that non-linear effects may be important in thin films[66]. This fact had
not been reported in bulk materials, where plastic deformation sets in well before strain values
large enough for non-linearities may be reached
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of materials, the orientation of the grains, the conditions and technique of
deposition.

A second reason for the persistence of deviations from bulk anisotropy is the
often fine microstructure induced by the growth method. The microstructure
may take the form of grains separated by grain boundaries, incorporation of
foreign atoms (like Ar during sputtering growth), an anisotropic orientation of
atomic bounds etc. This effect has dramatic consequences for materials with
large magnetostriction such as 3d-4f compounds, which can be tailored to display
perpendicular anisotropy for fairly thick films. It is also possible to tailor a uniaxial
anisotropy between two in-plane directions, through deposition under an applied
field like for Permalloy (Nig,Fe,,), or deposition with oblique incidence or on a
trenched surface. Another elegant technique to tailor the anisotropy of thin films
is irradiation with ion of medium energy. This irradiation may be done during
growth or post-growth. When the irradiation energy is suitably chosen, the ions
may either favor the mixing of atoms or their segregation, depending on the
thermodynamics trend for random alloying or phase ordering. Irradiating thin
films with perpendicular anisotropy, the former leads to a decrease of anisotropy,
while the latter can lead to an increase[67]. Irradiation may be combined
with masks to deliver films with patterned anisotropy, however no changes in
topography[68].

Summary

Magnetic anisotropy in low dimensions. Contributions to anisotropy of mag-
netic energy in thin films include magnetostatic, magnetocrystalline, interfacial and
magnetoelastic energies. For very thin films the latter two often dominate in the
nanometer range of thickness, opening the way to beating dipolar anisotropy to
display perpendicular magnetization.

3 Domains and domain walls in thin films

3.1 Bloch versus Néel domain walls

In sec.5 and problem sec.5 we considered a textbook case of domain-wall: the
Bloch domain wall, resulting from the competition of exchange energy against
magnetocrystalline anisotropy. A translational invariance along both directions
perpendicular to the domain wall was assumed, so that the problem boiled down
to a unidimensional equation that can be solved.

Translational invariance makes sense in the bulk, where domain walls may
extend laterally on distances much longer than their width. This hypothesis
becomes questionable in thin films, where the core of a Bloch domain wall,
displaying perpendicular magnetization, induces the appearance of magnetic
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Figure Il.5 - Schematics for (a) a Bloch domain wall and (b) a Néel domain wall.

charges at both surfaces of the thin film (Figure I.5a).

L. NEEL was first in addressing this issue and providing a rule-of-thumb
prediction for a cross-over in the nature of domain walls in thin films[69]. In a
thin film of thickness t he considered a domain wall of bulk width w ~ A, such
as determined from exchange and anisotropy energies. He took into account
the finite size effect along the normal to the film, modeling the domain wall as
a cylinder of perpendicular magnetization with an elliptical cross-section of axes
w x t (Figure II.5). For a Bloch domain wall the resulting density of magnetostatic
energy is of the order of Ky w/(w + t), based on demagnetizing coefficients (Ta-
ble I.3). When t < w it becomes more favorable for magnetization in the core
of the domain wall to turn in-the-plane, for which the density of magnetostatic
energy is Kq t/(w + t) (Figure 11.5b). This configuration where magnetization turns
in-the-plane, i.e. perpendicular to the domain wall, is called a Néel wall.

In the above model the core of the domain wall was assumed to be rigid
and uniformly magnetized. Besides, its energy was calculated crudely, and is
not suitable for soft magnetic materials where magnetostatic energy dominates
magnetic anisotropy so that no natural width of the domain wall exists. The
phase diagram of Bloch versus Néel wall can then be refined using micromagnetic
simulations. These show in the case of soft magnetic material that Néel walls
become stable for thickness below 744 (already below 15 — 2044 for cross-tie walls,
see next paragraph)e.g. for 50 nm for Permalloy and 20 nm for Fe[70].

Micromagnetic simulations also revealed a phase diagram more complex than
merely Bloch versus Néel walls (Figure 1l.6a). Going towards large thicknesses
domain walls undergo a breaking of symmetry with respect to a vertical plane;
they are named asymmetric Néel wall and asymmetric Bloch wall, and were
first proposed in 1969 through both micromagnetic simulation[71] and an ersatz
model[72]. Let us examine the detail of the asymmetric Bloch wall, of higher
practical interest (Figure I1.6b). Close to the surface the magnetization turns
in-the-plane; this may be understood from the necessity to eliminate surface
magnetic charges to decrease magnetostatic energy, or in other words to achieve
a flux-closure state. The surface profile of magnetization is similar to that of a
Néel wall, later motivating the name of Néel cap to designate this area of flux-
closure[73]. Notice that the center of the Néel cap is displaced from the vertical of
the core of the Bloch wall, explaining the name asymmetric for this domain wall.
This asymmetry arises so as to reduce now volume magnetic charges, balancing
omy/0x with Om,/0z terms in the divergence of M. Close to the transition from
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Figure 11.6 - (a) phase diagram of domain walls in thin films, calculated for
practical reasons in a strip of finite width[70]. Along the y axis D stands for
Dicke in German, so thickness t here (b) one of the first success of micromagnetic
simulation, predicting the existence of the asymmetric Bloch domain wall[71].
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Figure 1.7 - Wall angle and magnetostatic charges. (a) A wall that would not
bisect the direction of magnetization in the neighboring domains would bear a net
charge (b) A wall bisecting the magnetization directions in neighboring domains is
associated with a dipolar line.

Bloch to Néel the cross-section of the asymmetric Bloch wall looks similar to a
vortex, so that the name vortex wall is sometimes used.

3.2 Domain wall angle

We define as wall angle ¢, the angle between the direction of magnetization in
two neighboring domains. The properties of a domain wall as a function of its
angle depend on parameters such as film thickness ¢, anisotropy strength and
symmetry. Here we restrict the discussion to rather soft magnetic materials in
rather thin films, so that most of the energy of a domain wall is of magnetostatic
plus exchange origin.

The density of volume charges in an extended domain wall is —OM,/0x, where
x is the coordinate along the in-plane axis perpendicular to the domain wall (Fig-
ure I.7). Generally a wall is induced to bisect the direction of magnetization of
the two neighboring domains, so that it bears no net magnetic charge and thus
does not contribute significantly to magnetostatic energy through a long-range
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1/r decay of stray field (Figure 1l.7). Following Néel, we model the core of the
domain wall with a cylinder of elliptical cross-section, and estimate its energy
through the suitable demagnetizing coefficient.

We first consider a Néel wall. The total quantity of charge in each half of the
elliptical cylinder scales with 1 — cos(6/2), which can be replaced with #%/8 with a
reasonable accuracy even for not so small angles. As dipolar energy scales with
the square of charges, and assuming that the domain wall width does not depend
significantly on the wall angle, we come to the conclusion that the energy of a Néel
domain wall varies like 64.

We now consider a Bloch wall. Volume charges can be avoided if m, is uniform
and equal to cos(f/2) from one domain to the other, through the domain wall.
This means that, apart from the case 6 = 180°, the core of such a wall has both in-
plane and out-of-plane components, the latter equal to /1 — cos?(0/2) = sin(d/2).
Thus the magnetostatic energy of a Bloch wall scales like sin*(6/2) ~ 62, again
neglecting any change in the domain wall width, and the thickness dependence
of the demagnetizing field inside de domain wall.

(S? Wall energy versus angle. The energy of a domain wall depends on
its angle 6. In thin films domain walls are of Néel type with an energy
varying like 64, much faster than that of a Bloch wall in thicker films,

varying like 62.

3.3 Composite domain walls

Dramatic consequences result from the convex variation of domain wall energy
with angle outlined above. To set ideas, the cost per unit length of a 9o° Néel
wall is less than 10 % that of a 180° Néel wall. This means that a 180° Néel wall
may be unstable and be replaced by walls of smaller angle, even if this implies an
increase of the total length of domain wall. This is confirmed experimentally with
the occurrence of composite domain walls.

One type of composite domain wall is the so-called cross-tie (Figure 11.8a-b). It
can be checked that each wall fulfills the rule that its direction is bisecting that of
magnetization in the neighboring domains. Cross-tie domain walls occur only in
soft magnetic material, because the extended domain with different orientations
shall not come at the expense of an anisotropy energy. Notice also that as the
energy of a Bloch wall scales like 6> whereas that of a Néel scales like 64 (see
previous paragraph), 180° Bloch walls are replaced with cross-tie walls for a
thickness larger than that predicted by the Néel model for the cross-over between
Bloch and Néel.

Another type of composite wall is the zig-zag domain wall. Although domain
walls tend to bisect the direction of neighboring domains, it may happen due to
the history of application of field and nucleation of reversed domains, that two
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Figure 11.8 - Composite domain walls in thin films. (a-b) Schematics and MFM
image (13 x 15um)[74] of a cross-tie wall. On the schematics open and full
dots stand for vortices and antivortices, respectively (c-d) schematics and Kerr
image(350 x 450 um)[6] of a zig-zag wall.

domains face each other and are each stabilized, e.g. by a uniaxial anisotropy
or a gradient of external field with opposite signs. A 180° wall is unstable as
the net magnetostatic charge carried would be M;, the largest possible value.
In this case the domain wall breaks into short segments connected in a zig-
zag line (Figure 11.8c-d). Along the segments of the walls have a tendency to
turn 180° to be free of volume charges, implying some continuous rotation
of magnetization in the dihedron formed by two consecutive segments. The
angle of the zig-zag is determined by a complex balance between the reduction
of magnetostatic energy due to the net charge, versus the increase of energy
through the wall length, and anisotropy and exchange energy in the domains.

3.4 Vortices and antivortex

The inspection of Figure I1.8a reveals the existence of loci where, from symmetry
and continuity arguments, the direction of magnetization may be in no direction
in the plane. These were called Bloch lines, consisting of a cylinder of perpendic-
ular magnetization separating two Néel walls with opposite directions of in-plane
magnetization. The direction of perpendicular magnetization in a Bloch line is
called the polarity, and summarized by the variable p = £1. Bloch lines also occur
inside Bloch walls, separating parts of the wall core with opposite directions of
perpendicular magnetization. Thus Bloch lines are the one-dimensional analo-
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gous domain walls, separating two objects of dimensionality larger by one unit.
In Bloch lines exchange and dipolar energy compete, yielding a diameter scaling
with Ay, of the order of 10 nm in usual materials.

For the present case of in-plane magnetization, it is useful to introduce the
concept of winding number defined like:

n:l]{w-de (11.9)
27T

Integration is performed along a path encircling the Bloch line, and 6 is the
angle between the in-plane component of magnetization and a reference in-plane
direction. In short, the winding number is the total number magnetization rotates
along a circular contour. Applied to the cross-tie wall, this highlights alternating
Bloch lines with n =1 and n = —1 (resp. open and full dots on Figure 11.8a). A line
such as the former is also called a vortex and such as the latter an anti-vortex.
Notice that through the transformation of a translation-invariant Néel wall with
no Bloch line into a cross-tie wall, the total winding number is thus conserved.
This is a topological property, also called the topological number, which will be
further discussed in the framework of nanostructures (see sec.4).

We also introduce the circulation"5 number:

c = _Z%. f(f-V)mxde (11.10)
27
or equally written:
c = “d(Vxm)-zde (11.11)
27

where Z is the (arbitrary) normal to the plane defining the chirality and £ the
unit vector tangent to the integration path. In short, in practice in the case
n = 1 (vortices), the circulation is the sense of rotation of magnetization, either
positive or negative. So, vortices may have circulation 41, for anticlockwise and
clockwise circulation, respectively. On Figure 11.8a) vortices have ¢ = +1.

One also defines a so-called skymrion winding number, to characterize chiral
magnetic bubbles that may occur in the presence of the Dzyaloshinskii-Moriya
interaction (sec.5):

1 om  Om
w = 4? jjm : (W X a—y) dXdy (”12)

Integration is performed over an area this time, and (x, y) are in-plane cartesian
coordinate. w is also called topological charge. The absolute value of w counts
how times magnetization maps all possible 47 directions in space, while its sign
indicate the clockwise or anticlockwise in-plane winding around its core, like for

'5Some authors use the name chirality number.
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the winding number n. Skyrmions (see skyrmions) give rise to w = +1, while
antiskyrmions give rise to w = —1. The skyrmion winding number is more
suitable for magnetization textures over a surface, however with the direction
of magnetization continuously mapping all three directions.

? Topological numbers. The topology of micromagnetic Bloch lines is
fully characterized by three numbers: polarity p, winding number n and
circulation c¢. The product pc is also called the chirality. An antivortex
has zero circulation and is therefore non-chiral, while vortices have
¢ = +1 depending on the direction of rotation of magnetization, either

clockwise or anticlockwise.

Winding versus skyrmion winding numbers. Care should be taken
( \ to properly define which winding number is being used. Indeed, when
\/ applied to a vortex in the case of planar magnetization, one finds n=1
and w=1/2 although both are called winding numbers or topological
charge.

Bloch points. There exists also a zero-dimensional object, the Bloch
point, separating two parts of a Bloch line with opposite polarities.
For topological (continuity) reasons, at the center of the Bloch point
the magnitude of magnetization vanishes, making it a very peculiar
object[75].

3.5 Films with an out-of-plane anisotropy

Here we consider thin films with a microscopic contribution to the magnetic
anisotropy energy, favoring the direction perpendicular to the plane. Most
depends on the quality factor Q = K,,/Ky and film thickness t. For Q < 1 uniform
in-plane magnetization is a (meta)stable state however with large energy, while
uniform out-of-plane magnetization is not a (meta)stable state. For Q > 1 the
situation is reversed. In all cases a balance between anisotropy energy and
shape anisotropy needs to be found, the best compromise being through non-
uniform states. The competition of all four energy terms leads to a rich phase
diagram, see Ref.6 for a comprehensive theoretical and experimental review. A
schematic classification with no applied field is presented below, and summarized
in Table Il.2.

In the case of large thickness (see table and below for numbers), in all cases
the state of lowest energy is one of alternating up-and-down domains, with
a period 2W (Figure 1l.9a). This pattern is called strong stripe domains. This
situation was first examined by Kittel[76], and later refined by several authors.
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Table Il.2 - Perpendicular anisotropy. Summary of the magnetization state of
films with an out-of-plane contribution to magnetic anisotropy. t and W are the
film thickness and the optimum domain width, respectively.

Q<1 Q>1

t >t. Weak to strong stripe domains Strong stripe domains. W ~ t/?
with increasing t. W ~ t/2 and andthen W ~ t2/3 upon branching.
then W ~ t2/3 upon branching May be hindered by hysteresis.

tc Second order transition (no hys- A minimum value for W is reached.
teresis in the case of purely uni-
axial anisotropy) from uniform in-
the-plane to weak stripes

t <t. Uniform in-plane magnetization Perpendicular domains  with

diverging W, however quickly

masked by hysteresis.

The alternance cancels surface charges on the average, keeping magnetostatic
energy at a low level. Magnetic anisotropy is also kept at a low level as most of
magnetization lies along an easy direction. The remaining costs in energy arise
first from the vertical domain walls (of Bloch type with in-plane magnetization
to avoid volume charges), second from flux-closure slabs close to the surface
with a complex mixture of anisotropy, dipolar and wall energy. Minimization
of this energy yields straightforwardly an optimum value for W scaling like v/,
more precisely like \/t\/AK,/Kq for Q > 1 (Figure 1l.9a) and like \/t\/A/K, for Q <
1 (Figure ll.gb). At quite large thicknesses[6], typically hundreds of nanometers
or micrometers, this law is modified due to branching of domains close to the
surface (Figure Il.9c). Branching decreases the energy of closure domains, while
saving wall energy in the bulk of the film. We then have W ~ t%/3,

For decreasing thickness we shall consider separately two cases. For Q > 1
there exists a critical minimum domain width W, ~ 15+/AK,/Kg, which is reached
for t. =~ W,./2. Below this thickness flux-closure between neighboring domains
becomes largely ineffective due to the flat shape of the domains, thereby leading
to a sharp increase of W, with ultimately a divergence for t — o (Figure 1.9d).
For Q < 1the magnetization in the domains progressively turns in-the-plane, with
a second-order transition towards a uniform in-plane magnetization around t =
2m,. This pattern is called weak stripe domains due to the low angle modulation
of direction of magnetization in neighboring domains. Close to the transition the
situation is very simple to describe: the deviations from uniformity are sinusoidal
in space to first order, and one finds W ~ t.
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Figure Il.g - Stripe domains. Sketches of cross-sections of films with perpendic-
ular magnetization, for (a) open domains (initial Kittel's model), (b) perfect flux-
closure domains and (c) domain branching. (d) predicted width of domain W with
film thickness t, from ref.6. On the latter figure, on the y axis I = 24/AK, /Kgy.

Hysteresis and stripe domains. In the above, notice that the state
with lowest energy may not be reached for Q > 1, as the uniform state
perpendicular to the plane is (meta)stable. Thus strong stripe domains
may not occur even at large thickness, for very coercive materials. Below
t. the energy gain resulting from the creation of domains is very weak, so
that the divergence of W is often hidden again behind coercive effects.

Summary
Domains and domain walls in thin films. The features of domain walls are
different in thin films, compared to the bulk. This is mostly related to the need to
reduce dipolar energy, arising because of the loss of translational invariance along
the normal to the film. The thickness of the film has a strong impact, and often
approximations are required to describe the physics analytically.

4 Domains and domain walls in nanostructures

In this section we examine the effect of reducing the lateral dimensions of nanos-
tructures, from large to small nanostructures. We consider first the domains,
followed by special cases of domain walls.
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4.1 Domains in nanostructures with in-plane magnetization

We consider a piece of a thin film of soft magnetic material, quite extended
however of finite lateral dimensions. Under zero applied field these assumptions
allow us to describe the arrangement of magnetization as an in-plane vector field
m of norm unity, and neglect the energy inside and between domain walls. Under
these conditions Van den Berg proposed a geometrical construction to exhibit a
magnetization distribution with zero dipolar energy[77, 78]. As dipolar energy is
necessary zero or positive, this distribution is a ground state.

Zero dipolar energy can be achieved by cancel-
ing magnetic charges. Absence of surface charges
M - A requires that magnetization remains parallel
to the edge of the nanostructure (Figure I1.10); this
is a boundary condition. At any point P at the P
border, let us consider the cartesian coordinates
(x, y) with X and y respectively tangent and inward Figure IL.10 - The theory of
normal to the boundary. The density of volume flux-closure patterns. The
charges reads om,/0x+0m,/0y. As m lies along X,  principle for building a mag-
om,/0x = o. Thus cancelation of volume charges  netizaiton configuration free
is achieved if dm,/dy = o; this is the differential ~ ©f dipolar fields.
equation to be solved. As m, = o at the boundary,
absence of volume charges is fulfilled by keeping m normal to the radius originat-
ing from P.

Radii originating from different points at the boundary may intersect, each
propagating inwards magnetization with a different direction, in which case
highlighting the locus of a domain wall. It can be demonstrated that domain walls
in the nanostructure are at the loci of the centers of all circles inscribed inside
the boundary at two or more points. This geometrical construction satisfies that
any domain wall is bisecting the direction of magnetization in the neighboring
domains, a requirement pointed out in sec.3.2. Figure Il.11a-b shows examples
of the Van den Berg's construction. A mechanical analogy of this construction is
sand piles, where lines of equal height stand for flux lines.

Higher-order Van den Berg constructions. Divide a nanostructure

( in two or more parts, apply the construction to each of them before

\ bringing all parts back together: a higher order ground state is found
with zero dipolar energy. An infinity of such states exists. In experi-
ments such states may be prepared through special (de)magnetization
procedures. High order states may also not be stable in a real sample,
because the wall width and energy neglected in the model will become
prohibitively large. Notice also that the construction may still be used in
the case of a weak in-plane magnetic anisotropy in the sample, however
suitably dividing the sample into several parts with lines parallel to the
easy axis of magnetization (Figure Il.11)c.
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Figure Il.11 - Examples of the geometrical construction of Van den Berg.
(a) first order construction, along with a sand pile analogue (b) higher-order con-
struction, along with a sand pile analogue (c) Kerr microscopy of an experimental
realization of a high order pattern from a strip with an in-plane axis of anisotropy
(sample courtesy: B. Viala, CEA-LETI).

4.2 Domains in nanostructures with out-of-plane magnetiza-
tion

Although to a lesser extent than for in-plane magnetization, domains of
perpendicularly-magnetized material are influenced by lateral finite-size effects.
This is obviously the case for weak-stripe domains, as a significant part of
magnetization lies in-the-plane, calling for effects similar to those highlighted
in the previous paragraph. Strong stripe domains may also be influenced in a
flat nanostructure. Two arguments may be put forward: the local demagnetizing
field is smaller close to an edge, with respect to the core of a nanostructure; this
would favor uniform magnetization close to an edge, and thus local alignement
of the stripes along this edge. Another argument is that a stripe with opposite
magnetization is ‘missing’ beyond the border, removing a stabilizing effect on the
stripe at the border; this would call for orienting stripes perpendicular to the
border to better compensate surface charges. It seems that in some experiments
the stripes display a tendency to align either parallel or perpendicular to the
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Figure 1l.12 - The vortex state. Magnetization states of a disk of permalloy
with diameter 100 nm and thickness 10nm. The background color codes the y
component of magnetization. Arrows stand for the magnetization vector. (a) near
single-domain and (b) vortex states. These (and later) simulations were done using
the freeware OOMMF[81, 82].

border, in the same sample[79]. For thick films it seems that alignement of the
stripes parallel to the border is favored[80].

4.3 The critical single-domain size

In the above we considered domains in large samples. We now examine down to
which size domains may be expected in nanostructures, called the critical single-
domain size.

Let us consider a rather compact nanostructure, i.e. with all three demagne-
tizing coefficient N close to 1/3, and lateral size ¢. If uniformly magnetized, its
total energy is Esp = NKy 3. We now have to discuss separately the cases of hard
versus soft magnetic materials.

In hard magnetic materials domain walls are narrow and with an areal energy
density yw determined from materials properties. If split in two domains to close
its magnetic flux, the energy of such a nanostructure is £p ~ egNKy4l3 + yw? with
ep expressing the residual dipolar energy remaining despite the flux closure. v =
4+/AK, in the case of uniaxial anisotropy. Equating &sp and &y yields the critical
single-domain size lsp = ~w/IN(1 — €4)Kq] below which the single-domain state
is expected, while above which splitting into two or more domains is expected.
lsp ~ yw/NKyg ~ +/AK,/Ky4. lsp is of the order of one hundred nanometers for
permanent magnet materials.

In soft magnetic materials a flux-closure state often takes the form of a col-
lective magnetization distribution, implying a gradual rotation of magnetization
as seen in Van den Berg's constructions (sec.4.1). The relevant quantities are then
exchange and dipolar energy, so that the critical single-domain size is expected
to scale with the dipolar exchange length 44. Numerical simulation provides the
numerical factor, ¢sp &~ 744 for cubes and /sp =~ 444 for spheres[6, p.156].
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Estimating the critical single domain dimensions for non-compact nanos-
tructures (i.e. with lengths quite different along the three directions) requires
specific models. An important case is the transition from single-domain to the
vortex state in a disk of diameter w and thickness t (Figure 11.12). Esp ~ NKytw?
with N ~ t/w the in-plane demagnetizing coefficient. As a crude estimate the
(lower bound for the) energy £p of the flux-closure state is the exchange plus
dipolar energy of the core, around 1043tKy. Equating both we find the scaling law
wt =~ 1043 for the critical dimensions. Numerical simulation provides an excellent
agreement with the scaling law, however refines the numerics: wt ~ 2043[83].

;: 0.25

304 h True induction

) — — Average induction

g In the previous paragraph we dis-

- . .

5 cussed the scaling laws for dimen-

=) . .

g 0.10 sions, below which a nanostructure

- . .

o does not display domains. Here

9 .

b we notice that such nanostructures

g | — ,

§ 0.00] 00 oo are often not perfectly uniformly-
Lateral distance (nm) magnetized. We discuss the origins

. ) and the consequences of this effect.

Figure 1l.13 - Illlustration of the short o

range of interactions in 2D. Demagnetizing When deriving the theory of de-

field in a strip magnetized uniformly across magnetization coefficients in sec.4.3,
the width, of width 200nm and thickness we noticed that the self-consistence
2.5nm of the hypothesis of uniform mag-

netization may be satisfied only in
the case of homogenous internal field. In turn, this may be achieved only in
ellipsoids, infinite cylinders with elliptical cross-section, and slabs with infinite
lateral dimensions. Many samples do not display such shapes, in particular flat
structures made by combining deposition and lithography. Figure Il.13 shows
the demagnetizing field in a flat strip assumed magnetized uniformly across
its width. The field is highly non-homogeneous: it is very intense close to
the edges, mathematically going towards Ms/2; and very weak in the center,
below its average value —NM'""®. This is a practical example of the statement
found in sec.2.1, about the short range of dipolar fields for a two-dimensional
nanostructure.

Due to the high value of demagnetizing field close to the edges, magnetization
undergoes a strong torque and the system cannot remain uniformly magnetized,
at least in the absence of an external field. The resulting areas are called end
domains, with a tendency of magnetization to turn parallel to the edge to reduce
edges charges and instead spread them in the volume. Although no real domains
develop, this is a reminiscence of the Van den Berg construction. In the case
of elongated elements, so-called 'S" and 'C’ states arise, named after the shape

8The analytical derivation of which is proposed in problem sec.3.
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Figure 1l.14 - Near-single-domain states in rectangles of dimensions
200 x 10010 nm and squares of dimensions 100 x 10010 nm. (a) S state (b) C state
(c) flower state (d) leaf state.

of the flux lines, and reflecting the almost independence of end domain when
sufficiently apart one from another (Figure Il.14a-b).

Non-uniform magnetization configurations may persist down to very small
size, especially close to corners where demagnetizing fields diverge in the
mathematical limit[84, 85]. This leads to the phenomenon of configurational
anisotropy, described both analytically and computationnally[86-88]: certain
directions for the average moment have an energy lower than others, arising
from the orientation-dependent decrease of dipolar energy (at the expense of
exchange) made possible by the non-uniformity of magnetization. This effect
adds up to the quadratic demagnetizing tensor, and may display symmetries
forbidden by the latter, in relation with the shape of the element: order 3, 4, 5
etc (Figure 1l.14c-d).

4.5 Domain walls in strips and wires

We consider nanostructures elongated in one direction, which we will call wires
when the sample dimensions are similar along the other two directions, and
strips when one of them is much smaller than the other. The latter is the case
for most samples made by lithography, while the former is the case for samples
made e.g. by electrodeposition in cylindrical pores[89]. We restrict the discussion
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Figure Il.15 - Head-to-head domain walls in strips. (a) Schematic of head-to-
head and tail-to-tail walls. (b) simulated and MFM transverse wall (c) simulated
and MFM vortex wall. (top views).

to those strips and wires where no magnetocrystalline anisotropy is present, so
that shape anisotropy forces magnetization to lie along the axis. Domain walls
may be found in long objects, called head-to-head or tail-to-tail depending on the
orientation of magnetization in the two segments (Figure Il.15a).

Micromagnetic simulation predicts the existence of two main types of domain
walls for strips: either the vortex wall (VW) or the transverse wall (TW) (Fig-
ure Il.15b-c). The lowest energy is for the latter for tw < 6143, while the vortex do-
main wall prevails at large thickness or width. Although this scaling law is similar
to that of the single-domain-versus-vortex phase diagram for disks however with
a larger coefficient (sec.4.3), its origin is slightly different. It was indeed noticed
that most of the energy in both the VW and TW are of dipolar origin[90], resulting
from charges of the head-to-head or tail-to-tail. These charges are spread over
the entire volume of the domain wall. Using integration of H3 over space to
estimate dipolar energy, and noticing that the surface of the TW is roughly twice
as large as that of the VW and the decay with height of Hy is roughly w, the tw
scaling law is again derived. Although both transverse and vortex domain walls
are observed experimentally (Figure Il.15b-c), the range of metastability is large so
thatitis not possible to derive an experimental energetic phase diagram. TW may
for instance be prepared far in the metastability area through preparation with a
magnetic field transverse to the strip. For the largest thickness and especially
width TW turn asymmetric (ATW) through a second-order transition.

Summary

Domains and domain walls in nanostructures. The ground state of large nanos-
tructure may involve domain walls to achieve a non-uniform distribution of mag-
netization, so as to decrease dipolar energy. This takes the form of flux-closure
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domains described by the van den Berg construction for in-plane magnetization,
and stripes and bubbles for out-of-plane magnetization. When the system size is
decreased these are not more favorable, and the ground state is an essentially-
uniform-magnetized state. Domain walls may exist in strips, with an inner structure
dependent on the material parameters and geometry of the strip cross-section.

5 An overview of characteristic quantities

In the course of this chapter we met many characteristic quantities: lengths,
energies, dimensionless ratios etc. Here we make a short summary of them.

5.1 Energy scales

* Kg = (1/2)uoMzZ is called the dipolar constant. It is a measure of the maximum
density of dipolar energy that can arise in a volume, i.e. for demagnetizing
coefficient N = 1.

* 4+/AK, is the energy of a Bloch wall per unit area.

5.2 Length scales

« Exchange and anisotropy. In a situation where only magnetic exchange
and anisotropy compete, the two relevant quantities in energy are A and
Ky, expressed respectively in J/m and J/m3. The typical case is that of a
Bloch domain wall (sec.5). The resulting length scale is 4, = /A/K,. We
call 4, the anisotropy exchange length[12] or Bloch parameter, a name
often found in the literature. The latter is more often used, however the
former makes more sense, see the note below. Notice that 4, is sometimes
called the Bloch wall width, which however brings some confusion as several
definitions may be used for this, see sec.s.

+ Exchange and dipolar. When exchange and dipolar energy compete,
the two quantities at play are A and Ky. This is the case in the vortex
core (sec.3.4). The resulting length scale is 4q = \/A/Ky = \/2A/116M2, which
we call dipolar exchange length[6] or exchange length as more often found
in the literature, see again the note below.

- Exchange, anisotropy and dipolar. /sp ~ \/AK,/Kq is the critical domain
size of a compact nanostructure made of a quite hard magnetic material. It
emerges out of the comparison of two energies, one per unit volume, the
other one per unit surface. It is relevant in other situations, such as hard
stripe domains for films with perpendicular magnetocrystalline anisotropy.
Notice that /sp may be written A41/Q or A,Q.

« Other cases. In more complex situations other length scales may arise,
taking into account an applied magnetic field, dimensionless quantities
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such as the ratio of geometric features etc. For example the pinning of
a domain wall on a defect gives rise to the length scale \/A/u,MsH for a
soft magnetic material, or \/2A/+/KupioMsH for a material with significant
magnetic anisotropy.

Exchange lengths. The name exchange length has historical grounds

\ however is not well suited. Indeed exchange plays an equal role in
both 4, and 44. It is more relevant to name 4, the anisotropy exchange
length, and 44 the dipolar exchange length. We use the subscripts u (for
uniaxial) and d (for dipolar) to account for this, as suggested in Hubert's
book[6]. It would also be consistent to call 4y = \/A/uoMsH the field
exchange length.

5.3 Dimensionless ratios

« A quantity of interest in the quality factor Q = K,/Kq, which describes the
competition between uniaxial anisotropy and dipolar energy. Q largely
determines the occurrence and type of domains in thin films with an out-of-
plane magnetocrystalline anisotropy.

Summary

An overview of characteristic quantities. The distribution of magnetization often
results from the balance of the various energies involved in a system. Dimensional
analysis can be used to show that characteristic quantities emerge out of this
competition: length, energy, dimensionless ratios. Consideration of these quantities
allow to predict qualitatively the behavior in a given situation, and its scaling law
with material parameters and system dimensions, without having to perform any
calculation.




Problems for Chapter Il

Problem 41: Self-testing

1. How does the ordering temperature vary with the thickness t of an ultrathin
film?

2. Why is the magnetic moment per atom changed at the surface of a magnetic
film?

3. What can you say about the direction of magnetization for a thin film made
of a soft magnetic material

4. Describe what a Bloch wall and a Néel wall are, and when one or the other
occurs.

5. What is a cross-tie wall? In which case and why does it occurs?

6. What is the critical single-domain size? What is the order of magnitude of
this length for a sphere made of a soft magnetic material?

7. Describe the principle and hypothesis of the geometrical van den Berg
construction.

8. Comment on the range of magnetostatic interactions in a bulk magnetic
material, and in a thin film.

Problem 2: Short questions

1. Consider a cubic material with first-order magnetocrystalline anisotropy
constant K, .,p much weaker than Ky, in the form of a thin film with surface
normal (001).

+ Express the resulting in-plane magnetic anisotropy E(f) with 6 the in-
plane angle of magnetization with an easy axis, assuming that magne-
tization lies purely in-the-plane. Comment.

*+ Find exactly the easy directions of magnetization.

For both items consider both cases of positive and negative Ky, and
comment.

o1



92

PROBLEMS FOR CHAPTER Il

. Explain shortly what is in general the trend for the Curie temperature and

magnetic anisotropy in ultra-thin films.

. Figure 1116 displays the top view of flat elements made of a soft ferromag-

netic material, with a lateral size very large compared to any magnetic length
scale. Explain shortly the physical reasons and the resulting rules allowing
one to predict the distribution of magnetization in such elements. For each
of the elements, sketch the local direction of magnetization, and possibly
the locus of domain walls.

O

Figure 11.16 - Distributions of magnetization

. Draw a sketch of the expected contrast in the magnetic microscopy of do-

main walls. Consider four types of domain walls: perpendicular anisotropy
with Bloch wall; in-plane anisotropy with Bloch wall and Néel caps, 180° Néel
wall and 90° Néel wall. Consider four techniques: XMCD-PEEM, Lorentz,
MFM, polar Kerr. The sketches may be presented as an array for clarity.

. Explain why a Bloch wall with Néel caps in a film with perpendicular mag-

netization has only one internal degree of freedom, whereas Bloch walls in
films with in-plane magnetization have two.

. Derive with simple arguments the scaling law W ~ t"/2 for the period

of strong stripe domains (p.80). This may be done in the limit W < t
with suitable approximations to estimate the order of magnitude of the
magnetostatic and domain wall energies involved for one period W of the
pattern, and minimizing the proper quantity considering W as a variational
parameter.

. The Co layer displayed in Figure l.11b has in-plane magnetization, with an

in-plane easy axis of magnetization. Sketch its direction based on the
observation of the domain walls. Comment on the type of these domain
walls.

Problem 3: Demagnetizing field in a strip

Here we derive the analytical formula
for the in-plane demagnetizing field in a

\ . flat and infinitely-long strip magnetized
>

in-the-plane, a case that was shortly dis-
M

>

Figure 11.17 - Geometry. The left side
of the strip considered. The edge hold-
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cussed in sec.4.4. We call t and w its thick-
ness and width, respectively. We assume
magnetization to be homogeneous and
along the transverse direction.

3.1. Deriving the field

Express the stray field Hq arising from

a line holding the magnetic charge per

unit length \. As a first step, we consider

only Hg(x), the x component of the de-

magnetizing field calculated at mid-height of the strip, arising from the charges

on one of its edges. Write an integral form for this function. Show that it reads,
upon integration:

=

Hyx(x) = 5 1— 2 arctan <ZTX>] (11.13)

™

3.2. Numerical evaluation and plotting

Derive the limits and first derivative for Eq.(Il.13) for x — 0 and x — oo,
and comment. Provide a hand-drawn qualitative plot of this function. Without
performing more calculation, discuss how it compares in magnitude with the z
average over the thickness, i.e. (Hqx.) (x)? What is the (x, z) average of the latter
over the entire cross-section of the strip?

Problem 4: Three-dimensional micromagnetics: a
magnetic nanotube

In this problem we consider some aspects of micromagnetics in the 3D space,
with issues of curvature and topology. We illustrate this with a nanotube with
length L (along z), inner radius p, and outer radius p,. We describe magnetization
with cylindrical coordinates (Figure 11.18). In cylindrical coordinates, the volume
density of exchange energy reads:

2 2 2 2 2 2
Eex =A % + % + amz + % + % + amz + l (mz + mz)
0z 0z 0z op op dp p? r

(I1.14)

4.1. Uniform magnetization

As a first approximation, we consider that magnetization is uniform in the
tube, i.e. my, m, and m, are uniform.

« For L = oo, give the demagnetizing coefficients of the tube along x, y, z.
Describe the state of lowest energy.

+ Describe the state (or states) of lowest energy for p, = 2p, and L < p,.
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Figure 11.18 - Magnetic nanotube described with cylindrical coordinates

z

4.2. Cylindrical symmetry

We now consider situations with, simultaneously, a cylindrical and transla-
tional symmetry for magnetization, meaning that m,, my and m, are uniform. We
name radial, azimuthal and longitudinal the directions along p, 8 and 2.

« Draw a sketch of magnetization for each of these situations: m, =1, my =1
and m, =1.

* Write Eq.(ll.14) in the present case, and discuss the formula. What is the
reason of the remaining terms in the equation? Calculate the exchange
energy e per unit length of the tube in the three cases. Using a linear
expansion, propose a simplified expression in the case of thin-walled tubes,
i.e. for Ap = p, — p; < p,. Discuss what are the states of highest and lowest
energy in the case of a soft magnetic material, within the cases: m, = 1,
myg=1and m, = 1.

* Let us now consider a material with magnetocrystalline anisotropy with
volume density £, = —Kmj, with K > o. If E,c only is considered, describe
the state of lowest energy. Calculate the magnetocrystalline energy &,c per
unit length of the tube. When both E. and E., are considered and thus
Eex and Enc compete, discuss the state of lowest energy. We will restrict
the discussion to the case of thin-walled tubes. Discuss the specific length
arising from this competition. If the case where azimuthal magnetization is
favored, discuss what happens in the limit of a magnetic wire (p, — 0).

4.3. Domain walls

We consider a domain wall centered at z = o, separating two semi-infinite
domains extending towards —oo and +oo, respectively. We restrict the cas to
cylindrical symmetry, and consider a thin-walled tube with radius p and thick-
nesst = p, — p,. We will make an analogy between the nanotube and a thin film,
or more precisely a strip of width 27p and thickness t, which would be obtained
by unrolling the tube.

4.3.A. LONGITUDINAL MAGNETIZATION

We assume that m, = +1 are the ground state domains. In analogy with a



PROBLEM 5: THE DZYALOSHINSKII-MORIYA INTERACTION AND CHIRAL... 95

strip, how would you name a domain wall between the two domains? Make an
unrolled sketch of the domain walls which may arise.

This system is subject to a longitudinal magnetic field H, i.e. applied along Z.
With your knowledge of the domain wall dynamics in a strip, describe qualitatively
what is expected for the wall velocity as a function of strength of the applied field.

4.3.B. AZIMUTHAL MAGNETIZATION

We assume that my = 41 are the ground state domains. In analogy with a thin
film, what are the two kinds of domain walls that may arise? Make an unrolled
sketch. Can you move such domain walls with an external magnetic field? Now,
consider that the ferromagnetic tube surrounds a non-magnetic metallic core.
What is the consequence of passing an electric current through and metallic core?

4.3.C. RADIAL MAGNETIZATION

We assume that m, = +1 are the ground state domains. Such a state was
not predicted in sec.5.3. In analogy with a thin film, how would you name
such domains? Discuss how you could think of favoring this orientation of
magnetization, based on your knowledge of magnetic material science. What are
the two kinds of domain walls that may arise? Make an unrolled sketch.

Problem 5: The Dzyaloshinskii-Moriya interaction
and chiral magnetic structures

In this problem we consider the consequences of a peculiar exchange inter-
action, the Dzyaloshinskii-Moriya interaction (DMI), occurring only at atomic sites
lacking space inversion symmetry. This may occur either in bulk materials with a
suitable lattice structure, or at the interface between two materials.

5.1. Defining and handling the Dzyaloshinskii-Moriya interac-
tion

The DMI interaction may be expressed the following way, for one bound (Fig-
ure 11.19):

eom = —dj - (S; x S)) (11.15)

In this equation §; and §j are unit vectors standing for atomic moments at sites
i and j, epy is expressed in Joules, and d; is called the DMI vector. This vector is
specific to the bound considered, and when arising from an interface it may be
written:

d,’j = d,-,-(n X f,j) (11.16)

Fij is the unit vector from atomic site / to atomic site j, and n is the outward normal
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to the magnetic surface, here taken along X. Angles are such that a positive value
around y means counter-clock-wise rotation on Figure 1.19.

1. When in competition with conventional exchange eex = —/;(S; - $)), discuss
qualitatively the consequence of the DMI interaction (no calculation re-
quired). What is the sign of dj consistent with the gradual change of angle
displayed on Figure 11.19?

2. For the sake of simplicity we consider a square lattice of atomic sites in the
(v, 2) plane, with nearest-neighbor distance a along the y and z directions,
and DMI restricted to these four nearest neighbors. d; is thus identical in
strength for all bounds. d; will be written d in the following. When the
change of angle between sites / and j is small, expand the vector product
of Eq.(Il.15) using the operator r; - V. Show that, normalized to one atomic
site, the DMI energy may be written:

eom = da |y- mxa—m -2 mxa—m (I1.17)
0z oy

3. We introduce the DMI energy per unit surface E3,, = epwi/0? and its normal-
ization per unit volume £}, = epmi/(6*t) when dealing with an ultrathin film
of thickness t. Define the surface and volume quantities Ds and Dy, such as

for example:
. om . om
Elwi = Dv {y- (m X E) —Z- (m X 8-}/)] (11.18)

Discuss their units. Express again Eq.(Il.17), in terms of energy per unit
volume. Simplify this expression when a variation of magnetization is
expected only along z. Write it first in terms of components of m, then in
terms of the angle ¢, showing that Epy = Dy dp/dz.

5.2. Micromagnetic consequences of the Dzyaloshinskii-Moriya
interaction

We consider the combination of exchange, DMI and anisotropy energies,
expressed in energy per unit volume:

dp\? d
E(r) = A (d—f) +Dy (d—f> +Ksin? o (1119)
o) . "
4\ e/ /
i 7 Y z

Figure ll.19 - Notations for the Dzyaloshinskii-Moriya interaction
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Note that the variation of magnetization drawn on Figure I1.19 is the geometry for
a Néel wall.

1. Discuss the units of A, Dy and K. Which are the various characteristic length
scales that may arise due to the competition of these terms? Which are the
various domain wall energies that may arise?

2. Searching for the equilibrium shape of a domain wall we consider the
functional energy:

etm] = / E [m(r),d—m(r)] dz (I1.20)
oo dz
It is reminded that this energy is minimized under the Euler-Lagrange
condition:
OE d OE (11.21)
y .
890 dz o <th€)

We will search for a solution with extended boundary conditions ¢(—o0) = ex
and ¢(+o0) = 0, with e = +1. The sign of € is related to the chirality of the
wall, which you will comment a priori. Apply the Euler-Lagrange equation
and comment on the influence of Dy on the shape of the domain wall.
Remembering that the energy per unit surface of a conventional domain
wall is 4v/AK, show that the energy of the domain wall when the DMI
interaction is presentis: ow = 4\/A_K — emDy. Discuss.

3. We define the quantity Dyc = 4v/AK/7. What is the unit of this quantity?
Express D in terms of the anisotropy exchange length. For D > Dy
we have oy < 0, which means that domain walls may be nucleated
spontaneously, forming a periodic cycloid. Considering the energy per unit
volume of the cycloid, calculate its period L in the simple case where the
magnetic anisotropy K may be neglected, so that dy/dz is a constant. We
introduce the variable £ = 2A/|Dy| to express L. How could ¢ be named?

4. In the above we considered that the domain wall is of Néel type, as depicted
in Figure Il.19. However, it is known that a Néel wall implies a cost of dipolar
energy, compared to a Bloch wall. A domain wall may be written, in a
general fashion: m, = sin®siny, m, = cos®siny and m, = cosy. Draw
a sketch for such a general wall. Which are the values of @ for a Néel or a
Bloch wall? Express again Epy for an arbitrary value of cos @. Derive again
the energy of a domain wall, as a function of @. If we neglect the dipolar
cost of a Néel wall compared to a Bloch wall, what is the most favorable wall
in the presence of the DMI?

5. We write Ky the extra cost per unit volume of dipolar energy of the Néel
wall, compared to the Bloch wall. Using the arguments of Néel to estimate
this dipolar cost of Néel walls based on the demagnetizing coefficient of a
cylinder, express the extra cost for an arbitrary angle . Then, remembering
the equipartition of exchange and anisotropy energy occurring in walls of
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second order, and assuming that the profile of the wall is still determined
by exchange and anisotropy solely, show that the energy of a general wall
may be written: ow = 24Ky cos®* ® — ewDy cos @, where A is the anisotropy
exchange length. Discuss the type and energy of a wall occurring naturally
depending on the value of Dy. We introduce the critical parameter |D| =

4AKN/7T.

. Finally, we consider an external field H applied along y. Again assuming that

the profile of the domain wall is still determined by A and K, calculate oz,
the contribution of the Zeeman energy to the wall. Show that the effect of
the DMI is similar to an applied field Hpy applied along y, and provide the
formula for this equivalent field. Determine the type and energy of the wall
as a function of H.



Chapter Il

Magnetization reversal

Overview

The previous two chapters have led to the understanding of the arrangement of
magnetization in low-dimension system. We are now ready in this chapter to address
processes of magnetization reversal, i.e. the effect of an applied magnetic field
on the overall direction and local arrangement of magnetization. We restrict the
discussion to quasistatic effects, including thermally-assisted processes. We leave
aside precessional magnetization dynamics, to be examined in chap.lV, as well as
magnetization processes induced by spin-polarized currents, to be covered in the
last chapter. Systems will be discussed from the smallest to the largest, meaning
single-domain to potentially with non-uniform magnetization, so with increasing
complexity. The former are more prone for analytical modeling, while the latter are
tackled with approximations and dedicated modeling.

99
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1 Macrospins - The case of uniform magnetization

The determination of the energy landscape is crucial for describing hysteretic
phenomena, however difficult or impossible in practice in extended systems
due to the large number of degrees of freedom. Only simple problems may
be tackled analytically. Coherent rotation of magnetization is one of the oldest
and a useful starting point for more complex theories. It describes systems
with essentially uniform magnetization, which in practice applies reasonably
only to those systems with dimensions smaller than all magnetic length scales
(nanoparticles).

1.1 The Stoner-Wohlfarth model

The model of coherent rotation was proposed by Stoner and Wohlfarth in 1948
to describe the angular dependence of magnetization reversal[91, 92, the latter
being a reprint of the former], and developed in parallel by Néel to describe
thermally-activated processes. Many developments were made later, including
clever graphical interpretations[93] and generalization to three dimensions[94].

The model is based on the hypothesis of uniform magnetization, reducing the
problem to solely one or two angular degrees of freedom. This hypothesis is
very restrictive and may be reasonably applicable only to very small particles.
For large systems it is not suitable as is, with for example an experimental
coercivity being much smaller than the one predicted. Nevertheless, the concept
introduced for uniform magnetization bears some generality (e.g. exponents,
angular dependence), and may be applied to extended systems with some care,
e.g. to describe nucleation volumes (sec.3).

We consider a system with volume V, total uniaxial anisotropy energy X = K,V,
magnetic moment M = MsV. Its magnetic energy reads:

& =K sin®0 — poMH cos(f — 6p). (111.1)

0 refers to the direction of magnetization with respect to the lattice, 6 = o being
the initial state along an easy axis. 6y is the angle between the applied field and
this initial direction of magnetization. For simplicity here we consider only the
case 0y = m, thus a positive H is applied to promote magnetization reversal. We
use dimensionless variables e = £/X, H, = 2K, /uoMs and h = H/H,. H, is called the
anisotropy field. The equilibrium positions are determined by solving de/df = o.
The stability of these positions (stable or unstable) are determined by the sign of
d?e/df? (respectively positive or negative).
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Table Ill.1 - Stoner-Wohlfarth model calculations. Summary of the anisotropy
of energy and its derivatives, for the external field applied along an easy axis [0y =
m, see Eq.(lll.1)].

e de/d6 d?e/do?
sin@+2hcosh 2sinf(cosh —h) 4cos?h —2hcosl — 2
6. =0 0 2(1—h)
0_=m 0 2(1+h)
0y = arccos(h) 0 —2(1— h?)

The anisotropy field. Whereas dimensional analysis shows that

K/uoMs it the characteristic quantity emerging when anisotropy and

AN Zeeman energies compete, the general definition of the anisotropy field
is Hy = —0Emc/01oM, and H, implicitly refers to its magnitude along the
easy axis of magnetization. It reads 2K/uoMs for the case of uniaxial
anisotropy of second order, however have different expressions for
other cases.

The formulas for e, its angular derivatives, and their values for extrema of
e, are gathered in Table Ill.1; h = 1 is clearly a threshold value. Thanks to
the symmetry of the case considered, we may assume # € [0 — 7] without
loss of generality. While 6, = o and #_ = 7 are always equilibrium positions,
for h < 1 an extra equilibrium position 6, exists. In that case 6. equilibrium
positions are stable, while 6, is an unstable position, associated with an energy
barrier preventing magnetization reversal from the metastable 6, towards the
most stable 6_ (Figure Ill.1a). The energy barrier is:

Ae
AE

(1—hy (11.2)
K@ — H/H,) (111.3)

For h > 1 only 6, and #_ remain as equilibrium positions, respectively unstable
and stable. An abrupt switching of magnetization occurs for hg, = 1, as revealed
consistently by many signatures: de — o, 6, — 0. before vanishing, and
0. changes from a stable to an unstable equilibrium position. The resulting
hysteresis loop is square, with remanence exactly one, and coercive field equaling
the anisotropy field.



102 CHAPTER Ill. MAGNETIZATION REVERSAL

a
: © 2[—h=0
9 0 ol—h=0.1
= g —h=0.2
3 e —h=0.3
i = |
0] — h=
Q, £ .
= 25l h=0.6
e <l h=0.7
B =0.8
g .9
o
(@}
o
—
©
)
o
E‘
0 60 120 180 240 300 360
Magnetization angle (°)
b
)
0
2 0.5
(e
o
-
]
c
2 0.0
-—
<)
i)
§ 0.5 ‘ /
£ ; ]
] : :
=) : :
-1.0 j/

-1.0 -0.5 0.0 0.5 1.0
Applied field (dimensionless)

Figure lll.1 - (a) Energetics and hysteresis loops for the macrospin. Energy pro-
files for increasing values of applied field, of a macrospin with uniaxial anisotropy
of second order. Profile are drawn for both easy axis (fy = 180°, top) and
intermediate angle (y = 110°, bottom). For the latter, the series of profiles are
slightly shifted vertically for clarity. The initial (resp. final) minima are marked with
blue (resp. red) dots. (b) Hysteresis loops for various angles of applied field 6.
Equal values for angles symmetric with respect to 45 ° are clearly evidenced.
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, * The vocabulary of magnetization reversal. Several words may
be found to describe magnetization reversal, such as reversal,
switching, coercivity. Their meaning is slightly different, and their
use should depend on the case considered. Switching, used in
the above, refers to the abrupt change of direction of magnetiza-
tion, reflecting the existence of two distinct minima in an energy
landscape. It is a notion best suited to small systems in nanomag-
netism, such a single-domain, characterized by a limited number
of degrees of freedom. Coercivity is defined as M- H = o, referring
to states in which a system is half-way reversed. It is best suited
as a statistical value to characterize large systems, such as for
material science, where individual degrees of freedom (e.g. single-
domain grains) cannot be distinguished. Notice that no special
event may occur around coercivity for single particle, e.g. when
the field is applied closer to the hard than easy axis (Figure Ill.1b).
Reversal has the broader meaning of magnetization changing of
orientation along a given direction, generally that of an applied
field. The microscopic origin of the reversal may be diverse, such
as switching for a nanoparticule, domain wall motion, continuous
rotation of magnetization. Coercivity characterizes a half-way
reversed system.

+ Critical exponents for energy barriers. In most cases, even
idealized, A€ is not a polynomial with h and an expansion is used:
AE ~ (1 — h)*. « = 1.5in many cases, such as whenever the field
is applied in a direction which is not an axis of symmetry for a
macrospin, or for the one-dimensional model of a domain-wall
motion hindered by local defects (sec.4).

The calculation of the switching field may be generalized to an arbitrary value
of 8. Although the calculation is somewhat tedious, the result is simple:

1

hsw(0r) =
3/2
(sinz/3 0 + cos?/3 GH)

(I11.4)

The angular variation of the switching field is plotted in both polar and cartesian
coordinates in Figure lll.2. The former is known as the Stoner-Wohlfarth astroid"",
although the plot and associated geometrical interpretations were proposed only
later by Slonczewski[93]. The resulting hysteresis loops are displayed in Fig-
ure lll.1b. They evolve from perfectly square for the external field applied exactly
along the easy axis direction (A, = 0°), to fully reversible with no remanence nor
coercivity for the field applied exactly along a hard axis direction (6 = 90°).

1The mathematical name for this curve
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Figure lll.2 - Stoner-Wohlfarth switching . (a) Polar and (b) cartesian plots of
the switching field hs,, and coercive field h¢ as a function of the angle 6 of applied
field. The former is known as the Stoner-Wohlfarth astroid.

@ Limitations of the Stoner-Wohlfarth model. In the framework of the
model of coherent rotation, the maximum switching field equals the
anisotropy field (1) and is reached for 8y = o[x/2], while the minimum

switching field is 1/2 and is reached for 0y = w/4[n/4]. We will see

in sec.3 that in most systems the model of coherent rotation is not

relevant, and coercivity may be much smaller than the anisotropy field.

Fourfold symmetry of the astroid. It is at first sight surprising that the
Stoner-Wohlfarth astroid has a fourfold symmetry, while the anisotropy
of energy is twofold (uniaxial). The reason is linked with the above
discussion about the meaning of switching and coercive fields, in the
sense that the switching field is only one signature of magnetization
reversal. While hs, has the same value for two angles symmetric with
respect to 7/4, the magnitude of the jump is larger close to the easy
axis, compared to close to the hard axis. This magnitude in terms
of m-h ranges from 2 along the easy axis, to zero in the limit of
the hard axis. The angular variation of coercivity, another signature
of magnetization reversal, displays the expected twofold symmetry:
hc(r) = 3| sin(264)| (Figure 111.2).

1.2 Dynamic coercivity: effects of temperature and waiting
time

In the previous section we considered that a switching event occurs when the
associated energy barrier vanishes; this is a zero-temperature view. At finite
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Figure 11.3 - Experimental variation of coercive field with temperature in a
low-dimensional system[95]. The fit follows Eq.(lIl.5)

temperature thermal energy may help overcome an energy barrier of finite
height, an effect which we address here.

The effect of thermal energy is often described with a Boltzmann law: the
probability to overcome a barrier A€ is exp(—AE /kgT) during a time characteristic
of magnetization dynamics, a so-called attempt time 7,. It follows that the
probability p of not having switched obeys dp/dt = —p[exp(—A¢&/kgT)]/7,, and
thus p(t) = p, exp (—t/7m,) with 7, = 7, exp(4& /kgT). chap.IV provides some ground
for an order of magnitude for most magnetic systems: 7, ~107"°s.

? Attempt time. The meaning of the attempt time 7, is the typical
time involved in magnetization dynamics. 1/7, is called the attempt
frequency.

In the framework of the Stoner-Wohlfarth model, A€ follows Eq.(lll.3). Let us
express this effect the other way round: for a duration of observation 7 (e.g.
for a measuring technique requiring this averaging time), the field for which the
probability for magnetization switching reaches 50 %, which by definition is the
coercive field, may be expressed as:

ksT

H(T) =H(0K) |1— K In(7/75) ] (I11.5)

While this equation may be applied to various cases, in the framework of the
Stoner-Wohlfarth model we have H.(0K) = H, and K = KV. Figure IIl.3 shows an
experimental example of an H.(T) plot, along with a fit with Eq.(lll.5). Notice that
when « 7 2 this law is modified.

@_ﬁ\, Effects of temperature versus waiting time. The logarithmic function
varies extremely slowly, so that while variations of temperature have a
direct impact on the coercivity, changes of time scales must be of orders

of magnitude to have a similar impact.



106 CHAPTER Ill. MAGNETIZATION REVERSAL

« Extrapolating coercive field at zero temperature. H.(T) is a
function decreasing monotonously with temperature. Notice that
the variation is ever sharper close to zero temperature, with a
diverging derivative. This highlights that a measurement at a
somewhat low temperature to estimate the limiting value Hc(0)
may not be adequate, yielding an underestimation of its value.
Applying a scaling law of Hc(T) versus /T over a range of accessi-
ble low temperatures, is more suitable.

* Approximations. Eq.(lll.5) neglects the thermal variation of mag-
netization and of anisotropy coefficients, which may be readily
taken into account in a mean field approach by feeding a priori
known Ms(T) and K(T) curves. Another annoying effect is devia-
tions from the idealized Stoner-Wohlfarth case, responsible for
an energy barrier lower than KV. The discrepancy is likely to
be temperature-dependent, so that the latter effect cannot be
corrected a priori.

Eq.(lll.5) shows that there exists a temperature at which coercivity vanishes.
It is called the blocking temperature Tg, as below this temperature the total
moment of the system does not fluctuate under the time of observation; it is
the blocked state. Above Tg the moment fluctuates spontaneously, so that the
average moment vector is zero; this is the superparamagnetic regime, studied in
more detail in the next section.

From Eq.(l1l.5) Tg is defined as:

% = kgTg I (1> (111.6)
To

Notice that the value of Tg is not unique; it depends on the time scale it is defined:
the shorter the time scale, the higher the blocking temperature. For 7 ~ 1s one
finds In(7/7,) ~ 25, so that the above law is often found written X ~ 25kgTg in the
literature. In data storage the retention time should be years, which is of the order
of 10" s, so that the numerical factor is then close to 50. As the energy barrier
is proportional to the volume for coherent rotation, the larger the anisotropy,
the smaller the diameter up to which the particle is superparamagnetic. Critical
diameters of superparamagnetism for various materials are in the range from a
few to a few tens of nanometers, as summarized in Table I.2.
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1.3 The superparamagnetic regime

Here we analyze the behavior under applied field of a superparamagnetic system
described by a macrospin of moment M = M;V. We make use of reduced
moments m; to refer to the component of the macrospin along a given direc-
tion (m =1).

We first consider the case of no magnetic anisotropy. Let us use the partition
function of statistical physics defined as £: Z = > exp(—/¢&;) from the probability
of occupancy of states i with energy &;; i sums over all possible states. As &
contains the term —u,M,H (H being applied along the z direction), the average
moment along the direction z of the applied field may be computed like:

<m > = 1 %
L MBueZ OH

(111.7)

Integration on all possible orientations of magnetization in space reads:
Z= / sin @ exp (BuoMH cos 0) dé (111.8)
(o]

Simple algebra then yields (m,) = L(x) with x = Su,MH and L(x) = cothx — 1/x is
the Langevin function (Figure Ill.4b).

The situation is different in the case of magnetic anisotropy. A textbook case
is a system with a large uniaxial anisotropy (X > kgT), and magnetic field applied
along the easy axis. In that case only rare events drive magnetization away from
the easy axis and lead to switching its direction. We may thus consider that the
system is essentially either in the up or in the down state at most times. An
approximate partition function then simply reads Z = 2coshx and (m;) = B, ,(x).
B./, = tanh is the Brillouin 1/2 function also describing the susceptibility of an
Ising spin S = 1/2, except that here the spin moment is replaced by the macrospin
moment M. The proof for this handwaving argument, and the transition from the
Brillouin 1/2 to the Langevin function may be found elsewhere[96]. This highlights
the origin of the name superparamagnetism: its phenomenology is similar to that
of paramagnetism, however implying macrospins instead of individual electron or
atomic spins.

The analysis of the m(H) curve of a macrospin in the superparamagnetic
regime informs one about the magnitude of its magnetic moment, as saturation
is reached for x ~ 1. Similar to the case of paramagnetism, m(H/T) curves are
expected to superimpose, which is a check of the validity of the method in a given
context. Instead of fitting the entire curve the analysis is often restricted to the
zero-field susceptibility x. A quantitative analysis requires however the careful
choice of the model best fitted to describe a situation, as to first order expansion
L(x) ~ x/3 while Bi/2(x) ~ x. It shall be noted that anisotropy may be neglected
only when kgT becomes comparable with K. Using the Langevin model in a case
when it is the Brillouin 1/2 that is relevant, yields to a threefold overestimation
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Figure 11l.4 - (a) Langevin £ and Brillouin one-half B,,, functions. (b) The
three-steps zero-field-cooled / field-cooled procedure for an assembly of particles.
On the energy landscapes the red (resp. blue) dots illustrate magnetization
parallel (resp. antiparallel) to the applied field. The green shade illustrates the
states accessible through thermal excitations.

of the moment. For a reliable analysis 1/x is often plotted versus T, expecting
a linear variation whose slope is inversely proportional to the magnitude of the
magnetic moment. In the usual case of the study of an assemble of particle, a
shift of the 1/x line towards positive (resp. negative) field values is indicative of
ferromagnetic (resp. antiferromagnetic) coupling between the particles, similarly
to the Curie-Weiss law.

@ Rule of thumb. B,, tends to saturate for x ~ 1. As kg ~ 1.38 x
10723 m?-kg-s~2 and ug ~ 9.27 x 10°24A-m?, as a rule of thumb we
shall remember that an induction uoH = 1T is required for polarizing a
magnetic moment of 1ug at T = 1 K. At room temperature 300 T would
be required to significantly polarize atomic moments; this is the order
of magnitude of the conceptual molecular field describing magnetic

ordering with sizable Curie temperature.

- Beware of the model used. For the anisotropic case we considered

here only the textbook case of the magnetic field applied along the
direction of easy axis. In the case of an assembly of anisotropic particles
with an isotropic distribution of easy axis, the resulting magnetization
curve lies very close to a Langevin function. In real cases distributions
may arise (of particle moment and anisotropy). Introducing more
parameters for describing superparamagnetic curves will always yield
a better fit from the mathematical sense, however care should be
taken about the independence of the effect of the various parameters
introduced, and also on the reliability of the fitting if the values of
parameters depend on faint features of the magnetization curve.
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Figure Ill.4b illustrates a routine procedure for characterizing the transition
from the blocked to the superparamagnetic state of an assembly of particles: the
zero-field-cool / field-cooled curves. The first step is driving the system down in
temperature through the superparamagnetic transition. This is done under zero
applied field, so that at any temperature the average moment is zero. The second
step consists in raising the temperature back to above the superparamagnetic
transition (zero-field-cooled part). This is done under an applied field of moderate
magnitude, i.e. much smaller than the anisotropy field so that the two energy
minima still exist and are simply imbalanced in energy. When thermal fluctuations
become sufficient the energy barrier may be crossed and the population of the
two minima obeys the Boltzmann law, yielding an average moment scaling like
1/T, see above the B functions. In the third step the temperature is lowered again,
while keeping the moderate applied field (field-cooled curve). Upon crossing the
superparamagnetic temperature the system freezes with magnetization mostly
aligned along the field, yielding a high average moment. On these curves the
splitting between steps 2 and 3 allows one to identify the blocking temperature.
When there exists a distribution of blocking temperatures in an assembly, it is
reasonable to define the blocking temperature as half-way up the field-cooled
magnetization curve (Figure 1ll.4b).

? Parameters influencing FC/ZFC curves. The exact shape of FC/ZFC
depends on the strength of the applied field, especially the value and
field for the maximum of the ZFC part. So does it also in relation
with magnetic anisotropy, its strength and angular distributions, inter-
particles interactions etc[97, 98]. Thus, some care needs to be taken

when interpreting the values extracted from ZFC-FC curves.

Superparamagnetic or non-magnetic? There is often an argument
\ how to differentiate or even define the superparamagnetic regime from
the loss of magnetic order. From a theoretical perspective a particle may
be called magnetically-ordered when the magnetic correlation length
exceeds the size of a particle. For compact nanoparticles of diameter
at least 5 — 10nm this should happen not far below the bulk order-
ing temperature, which may be very large compared to the blocking
temperature. From a practical point of view the susceptibility should
scale like M/T in the superparamagnetic regime, and sharply drop to
mat/T above the ordering temperature, with m,; the value of individual
moments at the atomic scale.

S0
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1.4 What do we learn from dynamic coercivity and superpara-
magnetism?

In the previous three subsections we considered the magnetization reversal of
macrospins with increasing thermal energy, neglected in the Stoner-Wohlfarth
model (probed by low-temperature measurements), up to the superparamag-
netic regime. To schematize, we may learn a different information from exper-
iments performed in each regime. Here is a possible way to combine these
informations. This of course is an idealized procedure, and should be applied and
output taken with care. Pitfalls may come from non-perfectly uniform magneti-
zation, non-uniaxial anisotropy, distributions of various types in the assemblies
measured, inter-particle interactions etc.

1. The superparamagnetic regime is primarily sensitive to the moment M of
the particle. Thus, if Mg is known and a suitable model for fitting is chosen,
then information about the particle volume V may be extracted.

2. Second, the thermal decay of coercivity and the blocking tempera-
ture (sec.1.2) involves X = KV, so that based on the value of V estimated
previously, information about the volume density of anisotropy K may be
extracted.

3. Third, the extrapolation of coercivity down to low temperature provides
some information about the intrinsic process of magnetization switching.
For a truly single-domain nanometer-sized particle the Stoner-Wohlfarth
model should apply and coercivity reflect the volume density of anisotropy,
to be compared to the value estimated in the second step. Deviations may
reflect discrepancies in the analysis, or a magnetization process deviating
from coherent rotation as will be discussed in the next section.

1.5 Ensembles of grains

Some features of the magnetization reversal of isolated single-domain grains
were presented in the previous paragraphs. Some consequences may be drawn
for systems consisting of assemblies of individual grains, neglecting inter-grain
interactions of any type. Of easy access and modeling are the remanence
m, and the internal energy at saturation Ex, derived from the area above the
remagnetizing curve. Both depend on the dimensionality of the distribution of
easy axis. Assuming uniaxial magnetic anisotropy with constant K for simplicity,
we consider three common cases:

« The polycrystalline case, i.e. with an isotropic distribution of easy axis in
space. This may correspond to particles diluted in a matrix, or a poly-
cristalline bulk material. We then find: m3® = 1/2 and E2° = 2K/3.

 The polytextured case. By this we mean a shared axis with no distribution
for the hard axis, while the easy axis is evenly distributed in the plane
perpendicular to this axis. This would be the case of Fe(110) grains grown
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on a surface, the easy axis lying along the in-plane [001] direction. When the
field is applied in-the-plane we find: m?® = 2/7 ~ 0.64 and E2° = K /2.

+ The textured case, where all grains share the same direction of easy axis.
This would be the case for oriented powders, or e.g. (0001) hcp Co grains
on a surface. When the field is applied along this axis we find the case of a
single grain: m'® =1and E° = o.

@ Remanence, texture and interactions. The comparison of experimen-
tal findings with the expected figure for m; is often used as an indi-
cation for interactions, positive (e.g. through direct exchange between
neighboring grains) if the experimental value exceeds the expectation,
negative it it lies below. Systems with coupled grains will be considered

in more detail in the following section.

Concerning anisotropy, notice that in the first two cases the measure of Ex
provides an indication of K. In all cases, the sum of areas above the loops for all
three main axes equals 2K.

Summary

Macrospins. The model of uniform magnetization (also called macrospins) in
magnetization reversal is interesting because it can be solved analytically, however it
must be handled with care in large systems, in which non-uniform magnetization
distributions may play the leading role in magnetization reversal. Among the
quantities predicted is the switching field, which is reduced at elevated temperature
due to thermal excitations. Sufficiently-small magnetic grains may even switch
spontaneously above a given temperature, called the blocking temperature. This
phenomenon is called superparamagnetism.

2 Magnetization reversal in nanostructures

When the dimensions of a system reach or go beyond some magnetic length
scale, the hypothesis of uniform magnetization is in most cases no more reliable.
Internal degrees of freedom show up and change the properties of magnetization
switching, as they already do for the static configurations as seen in the previous
chapter. Below we progressively release the constraint of uniform magnetization,
going from the simplest to the more complex nanostructures.

2.1 Near single domains

It was stressed in sec.l.4.3 that the demagnetizing field may be homogenous and
collinear to magnetization only in uniformly-magnetized bodies such as cylinders,
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ellipsoids and slabs. Thus for all other shapes spatially-dependent torques
act on magnetization, making the hypothesis of strictly uniform magnetization
not possible self-consistently. This gives rise to the occurrence of near-single-
domain configurations and configurational anisotropy, discussed in sec.ll.4.4.
This additional contribution to the angular variation of magnetic anisotropy,
composed of magnetostatic and exchange energy, induces deviations from the
Stoner-Wohlfarth model and Slonczewski's astroid and rounding of magnetization
curves (non-full remanence). In a small system with no uniaxial anisotropy of
neither shape nor magnetocrystalline origin, configurational anisotropy deter-
mines easy directions of anisotropy and leads to a finite coercivity, whereas zero
coercivity would result from macrospin considerations. Micromagnetic simulation
or advanced micromagnetic modeling are required to quantify these effects[86].

When the particle size increases, it may happen that while the zero-field
magnetization configuration is single-domain or near-single-domain, magnetiza-
tion reversal involves a static (under constant negative field) or dynamic state
with significant deviations from uniform magnetization. This has early been
suspected as one of the possible reasons of the often-found discrepancy between
the large values of coercive field predicted by the Stoner-Wohlfarth model, and
experiments. This discrepancy is now referred to as the Brown paradox. For the
moment we still restrict the discussion to finite-size systems and let aside the case
of extended bodies in which magnetization reversal is often triggered at structural
inhomogeneities and defects, to be discussed in sec.3.1.

The first model for non-uniform magnetization switching in systems with
nevertheless small dimensions was proposed concomitantly by Brown[99] and
Frei et al. [100]""2. This new mode is called curling, and consists of a radius-
dependent orthoradial (azimuthal) tilting of magnetization around the initial
direction of magnetization, itself being along an easy and high-symmetry axis.
This breaks the initial symmetry of the system and gives rise to some vorticity or
curling (Figure ll1.5). This reversal mode is still highly symmetric and described by
one single linear functional degree of freedom. For this reason we will call it a
collective magnetization switching.

A scaling law for the range of relevance of curling is easily derived, in a way
similar to the one describing the critical size for single domain (sec.4.3) however
now implying an applied field. We consider a system with uniaxial anisotropy
of second order K,, demagnetizing coefficients N, along the easy axis and N
in the transverse directions. R is the half dimension across the hard direction,
e.g. the radius for a cylinder. Under the constraint of uniform magnetization the
average density of magnetic energy varies quadratically with the magnetization
angle, from Ky4N, along the easy axis to K, + KyN in the hard plane. We assume
Ky + Ks(N. — Ny) > o, defining the easy axis along u. Compared to coherent
rotation, the configuration shown in Figure Ill.5 may allow to decrease significantly

2The former manuscript came first by a few month, while the latter has a more detailed
presentation and set the notations for later use by the community
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the magnetostatic energy KyN, of the transient state in the hard plane. This is
achieved at the cost of exchange energy with density of the order of A(w/2R)>.
Translating this into fields, it is therefore expected that the switching field behaves
like
k
Heurn = Ha — Ms | Ny — - (11.9)
P
where k is a dimensionless number and p = A%. Detailed calculations[100] confirm
this law and provide a figure for k, for example 3.393 for the infinite cylinder and
4.367 for the sphere. In the calculation exchange and magnetostatic anisotropy
are estimated, both contributing to k. As the switching field for coherent rotation
is Hy — Ms(Ny — N), the crossover from coherent rotation for low radius to curling

for large radius occurs at pc = \/k/N,.

@ The dipolar exchange length appears again as the relevant length scale,
as the problem is that of the competition between exchange stiffness
and magnetostatic energy.

Curling in SI and cgs. Erroneous numerical factors for k in Eq.(l1l.9)
are sometimes found in the literature, due to the conversion to Sl units
from the cgs-Gauss system used in the initial calculations by Frei[100].

Following the latter the p~2 dependance in Eq.(lIl.9) is often written S~
with S = R/R,, Ry = \/A/M2 in cgs-Gauss. Correct formulas in SI units
may be found in section 3.5.4 of Hubert's book[6].

Let us take simple examples. For a cylinder of soft magnetic material H, = o,
Ny, = 0and N, = 1/2. Coherent rotation allows magnetization switching at field
He = Ms/2, curling may start for Hoyn = kMs(44/R)?. Thus coherent rotation will
be the expected switching mechanism for R smaller than the critical radius R, =
V/2kA4 = 2.644, and curling will be the expected mechanism for larger dimensions.
If magnetocrystalline anisotropy is non-zero these fields become H. = H, + Mg /2
and Heun = Ha+tkM(44/R)?, thus leaving the critical radius unchanged. For a sphere
we have He = Ha and Heyn = Ha — Ms [1/3 — k(Ag/R)?], with a critical radius R, =
V/3kA4 = 3.61944.

Calculations for curling can be extended as a function of the angle 64 of
applied field with respect of the main axis of the sample[101, 102]. Expressing the
source of magnetic anisotropy as originating from longitudinal N, and transverse
N, demagnetizing coefficients, one finds:

(Ny — k/p*)INL — k/p?)
V/(Ny — k/p?2sin® 0y + (N, — k/p?)? cos? Oy

Heur(01) = —Ms (111.10)
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Figure Ill.5 - (a) Schematics for the curling mechanism in a cylinder, from
uniformly-magnetized (left) to full curling (right). (b) Simulation of curling close
to the end of a cylinder with a square cross-section. On each surface the color
codes a transverse component of magnetization.

Nucleation or full switching?. Analytical calculations for curling modes
require the linearization of equations. Thus what is in principle pre-
\ dicted is the nucleation field in the sense of linear theory, i.e. the onset
of deviation from uniform magnetization (this should not be confused
with nucleation in the sense of the switching of a small volume of
material). This does not warranty that full reversal will follow. Numerical
solving shows that it coincides with the coercive field for direction of the
applied field close to the easy axis, while for angles close to the hard
axis the coercive field is distinct and larger than H,.

We learned above that the (minimum) critical size for a collective non-uniform
mode of magnetization switching to occur is about a few times the dipolar
exchange length. Still increasing the dimensions of a system, up to what point do
collective modes survive in practice? Indeed we have seen in chapter chap.ll that
nanostructures of dimensions much larger than the dipolar exchange length may
remain essentially uniformly magnetized in their remanent state, for instance for
large magnetocrystalline anisotropy, or for flat elements even made of a rather
soft magnetic material. In these cases, even if collective modes may lower the
energy barrier compared to coherent reversal, the energy barrier is still of the
same order of magnitude as the anisotropy energy. In such cases a more efficient
way to reverse magnetization is incoherent modes, i.e. the local nucleation of a
small reversed volume that then quickly expands and propagates the reversal
to the entire system. The energy involved is then only that contained in the
domain wall separating the already reversed from the yet unreversed domains.
Such modes are of particular relevance for systems with high anisotropy such
as materials for permanent magnets, strongly non-uniform demagnetizing field
such as for very flat elements, or with defects locally lowering the nucleation
field. An unambiguous proof that systems near-single-domain in the remanent
state may be reversed incoherently is a variation of coercivity much faster than
predicted by Eq.(lll.5), indicative that the volume involved in nucleation is much
smaller than the volume of the entire system. We will come back to this when
describing extended systems (sec.3).
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Figure 111.6 - Curling model for magnetization reversal in the textbook case
of an infinitely-long cylinder made of a soft magnetic material: dimensionless
switching field (left) and coercive field (right) versus the angle of applied field
Oy with respect to the easy axis of magnetization. Curves for various values
p = R/A4 are shown (see figures on the plot), along with those of coherent
rotation (Figure lll.2b). The reversal mechanism to be expected is the one with the
lowest value. Thus below the critical value p. =~ 2.8 the mechanism for switching
is curling close to the easy axis direction, while it remains coherent rotation close
to the hard axis.

Let us give an example of incoherent magnetization reversal. In the previous
chapter we saw that extended and flat elements with in-plane magnetization
may curl their magnetization close to edges, where demagnetizing field are the
largest""3 (Figure 11.13). It is obviously these areas that are more prone to reversal,
triggering an incoherent process for magnetization reversal (Figure 111.7). Suitable
approximations enable simple models to be developed. For instance it was
noticed the switching field of elongated and flat elements scales like Ms(t/w)[103],
with width w, thickness t, magnetization Ms . This can be understood as the end
domain of the S- or C-state being the locus of nucleation, with an energy barrier
to overcome scaling like the lateral demagnetizing coefficient of the dot, itself to
first order scaling with t/w: H. ~ H., + 0.25Mst/w. In this formula H., relates to
the pinning of the thin-film material itself. Thus, engineering the geometry of the
end of a stripe is a mean to control the nucleation field, to a certain extent. For
example, nucleation occurs at a smaller applied field for tapered ends than for

3Now that we have seen curling states, let us note that these edge states are sometimes called
edge curling walls[6]
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Figure Il11.7 - Incoherent magnetization reversal in a strip of Permalloy with
width 100 nm and thickness 10 nm, through growth of a nucleation volume, fol-
lowed by propagation of a domain wall.(a) Magnetization states at equilibrium
(b) Snapshots under a fixed field, of magnitude larger than the nucleation field.
The value of applied induction field is indicated above each map. The simulations

were run with damping parameter o =

1 to get simple magnetization configura-

tions, however in real samples « is much smaller than 1. This will be discussed in

chap.IV.

arrow-shaped ends[104].

The above scaling law for the nucleation field in strips[103] was derived
experimentally at room temperature. Both thermal activation and edge
roughness[103, 105] contribute to reduce the nucleation, compared to
an ideal system as considered in most micromagnetic simulations.

Summary
In this section we have seen that upon increasing size, the mode of magnetization
switching is expected to evolve from coherent, to non-coherent however collective,
to finally incoherent (nucleation-propagation).

2.2 Large elements of soft magnetic material

When further increasing its dimensions, a system may contain domain walls to
close its flux and thus reduce magnetostatic energy. This is a flux-closure state.
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We restrict the discussion here to flat element made of soft magnetic material,
for which the number and locus of the domain walls are expected to result
from energy minimization. The Van den Berg solutions described in sec.4.1 were
extended by Bryant and Suhl[106, 107] when an external field is applied. The
model is that of a perfectly soft material with infinite susceptibility, leading to
the perfect expulsion of magnetic field (applied plus dipolar), with divM = o0 and
zero edge charges. This leads to the description of magnetization as M = curl A
where A is a vector potential; magnetization lines happen to be lines of isovalues
for A. Unfortunately there is no more a geometrical construction for describing
the magnetization state, and the solution shall only be obtained from examining
boundary conditions at the lateral edges of the element. Figure Il.8a shows an
example of the evolution of such flux-closure elements under magnetic field.

Later, more elaborate (numerical) theories were proposed, lifting the con-
straint of full expulsion of magnetic field[108-110], and considering edge charges.
This in principle allows one to fully describe the magnetization curve M(H) of a
soft element of large dimensions. Some features of magnetization curves may
however be discussed without the need to resolve in detail the magnetization
configuration at any field step. We noticed in sec.1.3 that the Zeeman term
contributes in principle to a magnetic enthalpy, not an internal energy. In this
thermodynamic framework and under quasistatic variation of the applied field,
the work provided to the system upon rising the external field is stored as internal
energy:

Eine(H = 00) — Eine(H = 0) = MOMSV/ H-dm (111.11)
]

Thus, assuming that a near single-domain state is reached at high field, and
neglecting the energy of the remanent state, the area above the magnetization
curve equals the demagnetizing energy in the direction considered NKy. Contrary
to the case of a macrospin, and due to the non-uniformity of demagnetizing fields,
the M(H) curve is not a straight line with slope 1/N, but a concave curve with initial
susceptibility larger than 1/N (Figure 111.8c).

@ Eq.(l11.11) holds for infinitely-soft materials only, where the system always
resides in a state of minimum energy, with no hysteresis. In the
case of hysteresis, implying jumps between local minima of different
energy, part of the work provided is lost for the magnetic system and

contributes to heating.

The above considerations remain valid in the presence of anisotropy of a
microscopic energy such as magnetocrystalline, as long as hysteresis is negligible.
In that case both demagnetization energy and anisotropy energy contribute to the
area above the curve.

We also neglected the energy of the remanent state that may contain domain
walls and vortices, which we know have a finite energy (sec.l.5). As the energy
of a vortex is constant and that of a domain wall is linear with its length, their
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Figure 111.8 - Hysteresis loop of flux-closure systems. (a) Numerical solution of
a magnetization process in an extended soft element with a flux-closure and one
domain wall[106] (b) Hysteresis loop of a soft element of moderate size, for which
some hysteresis remains around nucleation / annihilation events of vortices and
domain walls (c) Hysteresis loop of a soft element of extended dimensions.

contribution to the average energy (normalized with its area ~ L?) is indeed
negligible for large size L of a nanostructure. When the dipolar exchange
length is not negligible before L then a sizeable change of moment occurs upon
nucleation and annihilation of vortices and domain walls, often associated with
hysteresis (Figure 111.8b). Besides these objects contribute to a non-zero remanent
energy, reducing the area above the magnetization curve[111]. Its measurement is
an elegant way to estimate the energy of a micromagnetic state with flux closure,
a quantity that cannot be measured directly.

2.3 Motion of domain walls in one-dimensional elements

A domain wall is a two-dimensional object in a bulk system, and takes asymp-
totically the form of a one-dimensional object in an extended thin film with de-
creasing thickness. Still decreasing dimensionality, a domain wall may be viewed
as a point (a zero-dimensional object) in an essentially one-dimensional system,
either a strip or a wire, if the details of its internal structure are ignored (sec.l1.4.5).
This situation provides the simple example of domain-wall motion, to start with
a qualitative feeling. Various models suited to describe magnetization reversal in
extended systems in the presence of pinning will be described in sec.3.

Over the past fifteen years studies have been thriving on the motion of
domain walls in strips made by lithography. The motion has been set under
the stimulus of either magnetic field or spin-polarized current. As this motion
implies precessional dynamics, we will study it in detail in chap.lV. Here we
provide a quasistatic description of domain wall motion under a quasistatic
applied magnetic field.

A domain wall in a one-dimensional system may be modeled as an object
moving in a one-dimensional energy landscape, whose examples of microscopic
basis will be discussed in the next paragraph. Local minima in the energy
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landscape imply trapping or pinning of domain walls. A magnetic field applied in
the direction of one of the domains on either side of the wall, applies a pressure
on the wall. We call propagation field the magnetic field for which the pressure
becomes larger than the pinning force, setting the domain wall in motion. In a
quasistatic picture, the domain wall will move until a large enough pinning site is
reached.

The microscopic origin for an energy landscape and thus for pinning, may
come from the material or from the edges of the track. The former may
result from defects such as grains and grain boundaries, affecting exchange,
anisotropy and/or magnetization. The latter may come from spatial variations of
the strip/wire width or thickness (roughness). Of special focus is edge roughness
induced by lithography, either residual[112] or done intentionally[113]. As a general
rule the strength of this pinning increases with decreasing strip width, as the
source of pinning arises just once at either edge, while the Zeeman pressure
scales with the strip width. When roughness is large one may better describe
it as a modulation of strip width, either a constriction (local decrease of cross-
section) or protrusion (local increase of cross-section). As the total energy of a
wall increases with the cross-section of the one-dimensional object, a constriction
is expected to act as a potential well, whereas a protrusion is expected to act as
an energy barrier.

Investigating domain wall motion in a strip requires a means to create single
domain walls. A common way to create domain walls in strips with in-plane
magnetization is to design curbed areas along the wires, then apply and remove a
large magnetic field along the radius of the curb (Figure Ill.9a); this was proposed
independently by two groups[114, 115]. Upon application of a field larger than the
lateral demagnetizing field of the strip, the magnetization becomes essentially
oriented along the applied field. When the field is reduced the magnetization
progressively rotates back along the local direction of the strip, to decrease
magnetostatic energy. The sense of rotation is opposite on either side of the curb,
resulting in a head-to-head or tail-to-tail domain wall at remanence. Another com-
mon way to create a domain wall is to connect a pad at an end of the strip, whose
existing domain walls may serve as a reservoir for injection[116, 117] (Figure Ill.gb).
For a material with in-plane magnetization it is often designed to have a flux-
closure pattern to permanently host one or more domain walls. For a material
with out-of-plane magnetization the pad is designed with large dimensions, so
that the probability to include defects promoting nucleation is high. Yet another
way is to pattern a crossed metallic strip run by an electric current to create a local
Ersted field, locally reversing magnetization[118]. This route is again effective for
both in-plane and out-of-plane magnetization.
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Figure Ill.g - (a) Strategies for the controlled nucleation of domain walls in
strips with in-plane magnetization. Creation of domain walls in a curbed strip
upon application (top) and removal (bottom) of a magnetic field along the radius
of the curbs. This scheme is valid only for in-plane magnetization (b) Injection of a
domain wall in a strip from a reservoir. This scheme is valid both for in-plane (as
shown) and out-of-plane magnetization.

2.4 Magnetization processes inside domain walls and vortices

Domain walls define the boundary of domains, and as such have a dimensionality
lower by one unit to that of domains. Let us now consider domain walls and
vortices as structures in themselves, whose magnetic texture is described by
internal degrees of freedom. For example, the core of a magnetic vortex or that
of a Bloch domain wall in a film with in-plane magnetization may be pointing
either up or down. A Bloch domain wall has also a second degree of freedom: its
chirality, or in other words the transverse orientation of its top versus bottom
Néel caps (sec.ll.3). A Néel wall also has one degree of freedom: its chirality
(related to the sign of the transverse magnetization in the core of the domain
wall), clockwise or anticlockwise. Can one switch the magnetization underlying
these degrees of freedom, in a way similar to the switching of magnetization in a
strip or wire?

Although theories had been developed long ago for switching such degrees
of freedom[6, 119], their practical realization in extended thin films is problematic,
as applied fields induce domain wall and vortex motion. It has only been more
recently that such processes could be evidenced when vortices and domain walls
are trapped in flux-closure dots, so that their location is not affected by external
fields.

Let us first consider the edge curling domain found at the edge of a flat
and extended element. Applying a magnetic field along the edge may allow
to switch the direction of this edge domain, through the propagation of a
localized volume of magnetization pointed perpendicular to the edge[120-122].
The core of magnetic vortex is also a one-dimensional object. Its switching with
a magnetic field applied along the core was demonstrated for vortices trapped
at the center of micron-sized circular dots[123]. This magnetization process
requires the nucleation and propagation of a zero-dimensional object, the Bloch
point[75]. Topological constraints (the boundary conditions) indeed require that
the magnitude of magnetization be zero at some location during the course
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of magnetization reversal. Notice that this process is poorly reproduced by
micromagnetic simulations[124], because its characteristic length scale is close to
the atomic size. Yet another one-dimensional magnetization texture is the Néel
caps found at surfaces of a Bloch domain wall, as discussed in sec.ll.3.1. Switching
of Néel caps is also possible, by application of a magnetic field in the direction
transverse to the wall, i.e. parallel to the magnetization in the Néel cap[125]. This
process does not require a Bloch point, however is achieved through the motion
of a surface vortex.

Summary

Magnetization reversal in nanostructures. As soon as the size of a systemis larger
than a few times the smallest characteristic length scale, magnetization reversal
occurs in a non-uniform fashion, even if at rest the system is mostly uniformly-
magnetized. Reversal modes may include curling for small systems with a uniaxial
symmetry, and other collective modes e.g. for large structures made of a soft
magentic material with in-plane magnetization.

3 Magnetization reversal in extended systems

We consider now systems with macroscopic lateral dimensions, with in mind
mostly the case of thin films. It is then impractical to describe all domains and
domain walls in detail. Magnetization switching must be described by statistical
means, and understood on the basis of effective models. We introduce the
concepts of nucleation and propagation, and magnetic aftereffects, which are
standard concepts in magnetic materials science.

3.1 Description of the question at stake

In sec.1 we introduced the Stoner-Wohlfarth model, describing magnetization
reversal of single-domain systems. The model predicts an angular dependence of
the coercive field scaling with the anisotropy field, be it of magnetocrystalline or
shape origin. Experiments show that in most cases the coercive field of extended
systems is much lower than these predictions, sometimes by one to two orders
of magnitude. This discrepancy is known as the Brown paradox, and was an early
issue of micromagnetism.

In the previous section (sec.2) we discussed that releasing the constraint of
uniform magnetization reduces the energy along the pathways for magnetization
reversal. This is analogous to the consideration of static cases in chap.ll, for
which releasing this constraint allows in most cases to reduce the energy of a
system at rest. Non-uniform reversal modes are then favored, with a coercive
field smaller than predicted by the Stoner-Wohlfarth model. In both cases, static
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configurations and reversal pathways, most examples of non-uniform configu-
rations discussed so far resulted from the magnetic anisotropy, size and overall
shape of the system. Such ingredients and their related consequences are named
intrinsic. Figure Ill.7 provides an example of intrinsic nucleation of magnetization
reversal. However a real system has nearly always defects in its structure: grains
and grain boundaries, inclusion of other phases, variations of composition or
crystal ordering, roughness (of special relevance for low-dimensional systems)""4,
Such ingredients and their consequences on magnetization reversal are named
extrinsic.

In practice both intrinsic and extrinsic phenomena affect magnetization re-
versal. However the number of defects increases with system size, so that in
general the larger the systems, the more extrinsic effects tend to determine
magnetization reversal. Depending on the phenomena involved the reversal
may take several forms such as continuous rotation of magnetization inside
domains, successive switching of individual grains or small nuclei, propagation
of domain walls etc. Due to the large number of degrees of freedom involved
in extended systems, these phenomena may be described only macroscopically
and phenomenologically. It is the role of models to extract signatures of the
underlying phenomena, from experimental statistical or averaged quantities. It
is necessary to identify these microscopic phenomena in order to control them
and tailor the macroscopic properties of a material.

In the following we first examine simple examples of pinning models, to
highlight the physics of extrinsic magnetization processes. Then we discuss
the effect of temperature, helping to overcome energy barriers against pinning
or nucleation, and introduce the concepts of activation volumes and magnetic
aftereffects. Finally we come back to practical cases of models, applied to
deriving energy barriers and laws for aftereffects. We will show how the various
types of physics at play at the microscopic scale may be inferred through their
temperature- or waiting time dependence.

3.2 Zero-temperature views

Some of the earliest models for extrinsic coercivity are based on the propagation
of a domain wall in a heterogeneous medium. In 1932 Bloch provided a calculation
for the width and the energy of a domain wall[50]. Becker had already stressed
that inhomogeneities of strain must induce variations of the strength and direc-
tion of the easy axis of magnetization due to magnetostriction, and the same
year as Bloch he proposed that this is a source of pinning for domain walls[126].
In 1937 Kondorski quantified this effect, making a link between coercivity and
a one-dimensional energy landscape arising from strain[127]. This is known as
the Becker or the Kondorski model. Here we keep from this early work only

l4we briefly mentioned it and took it into account phenomenologically in the previous section,
in the Kondorski model, see sec.2.3
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the simple picture of a one-dimensional energy landscape U(x) (Figure lll.10).
We remain at the phenomenological level, so that U(x) may reflect a variety of
situations such as defects affecting anisotropy or exchange, the lateral size of a
system such as width in a strip, diameter in a wire[128], thickness in a film etc.
Important to notice as an approximation is that the domain wall is considered
as pinpoint in this model. The link between the energy landscape and the
propagation field is the focus of problem 4. In short, for an applied field favoring
motion of the domain wall along +x, the field needed to achieve propagation is:

1 dU

— .12
211oMs dx ( )

p =

The propagation field is thus determined by the steepest rising slope of U(x), as
illustrated on Figure lll.10a-b. Let us consider the simple case of a flat landscape
with a local variation. A maximum of U gives rise to an energy barrier. This
hinders the propagation of the domain wall, however does not prevent its going
backwards if the field is reversed (Figure lll.10¢). To the contrary, a minimum of U
is a potential well into which a domain wall is trapped (Figure Ill.10d). Once there
it is prevented to move in either direction, unless a field of sufficient magnitude
is applied, a so-called depinning field. In practice one expects a distribution
of local propagation fields, unless the source of defects is well controlled and
reproducible from one place to another. A gaussian distribution of defects is
then expected to induce a propagation increasing logarithmically with the length
of the segment considered[128]

@,3 The reading of the Kondorski formula is the following: for propaga-
tion to occur, the increase of internal energy must be compensated
by the energy provided by the operator through the Zeeman term.
The factor 2 accounts for the fact that upon a change of position dx,
a volume with initially down magnetization is converted into an up

domain, associated with a difference of energy 2u,MsH.

Eq.(lll.12) may be extended to the case of an external field applied at an
angle 6 with magnetization in the two domains. For a 180° domain wall Ms is
simply replaced with M; cos 6, provided that the magnitude of the applied field
is small compared to the anisotropy field; in other words: the magnetization in
the domains remains essentially fixed along the direction of easy axis. If these
propagation fields control magnetization reversal, then one expects the coercive
field to vary like 1/ cos 6. Notice then the minimum and rather flat variation close
to the easy axis of magnetization. When measured experimentally, this is consid-
ered as a signature of a propagation phenomenon. The cos # may also be viewed
as related to the susceptibility of the core of the domain wall, making an angle
0 with the applied field. The similarity with the curling model for large system
radius (Figure 111.6) is understandable as in this case the orthoradial component
of magnetization, which appears spontaneously to reduce magnetostatic energy,



124 CHAPTER Ill. MAGNETIZATION REVERSAL

3] b A Energy
A Energy

A Force A Force
EA Energy il A Energy

_/\_
——pe

B A Energy

Figure lll.10 - One-dimensional model for domain-wall motion. (a) Energy and
the associated force under zero magnetic field (b) Similar plots with a magnetic
field added (c-d) An energy barrier and an energy well (e) The energy landscape
depicted in b in the presence of thermal energy. The lighter green areas show the
states reachable through thermal excitations, and arrows indicate energy barriers
that may be crossed.

has the same orientation as the core of a domain would have, with susceptibility
proportional to cos 6.

When the scale of the spatial variation of the properties of a material is
comparable or larger than the domain wall width, the Kondorski model may
readily be applied with U(x) ~ 41/A(x)K(x) (see sec.l.5), or any other type of formula
for the domain wall energy if applicable. However, when the spatial variation of
a property becomes significant at the scale of a domain wall, then its impact on
the micromagnetic arrangement of the wall must be studied to derive U(x). In
this case x is, e.g., the center of mass of the domain wall. Let us provide an
example, proposed by A. Aharoni[129]. This author considers a uniaxial anisotropy
of second order varying in space K(x) with simple shapes (Figure IIl.11).

The first case considered is that of a soft inclusion in the material: K = o for
x| < d, and K = K, elsewhere. This inclusion induces a potential well for the
domain wall, centered at x = 0. In the limit d < 4, the depinning field scales
with H,d /A, (see problem 4). The meaning of this law is straightforward: when
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Figure Ill.11 - Simple models of defects favoring local nucleation, or the
pinning of domain walls.

the domain wall overlaps the defect no anisotropy energy is paid over a length
d, resulting in a potential well of the order of K,d. If moving by 4, the domain
wall leaves the defect, yielding a gradient of energy scaling with K,d/4,. The
scaling law is then derived easily from Eq.(lll.12). If no domain wall pre-exists,
the defect allows to nucleate one at a field lower than the anisotropy field of the
non-defective phase. As the defect is only a perturbation to the main phase, the
nucleation volume may be viewed as an entity subject to coherent switching. The
angular law for nucleation events is thus expected to show some similarity with
the Stoner-Wohlfarth law, i.e. displaying a maximum for the field applied close
to the easy axis of magnetization. Now consider the limit d > A,. At the scale
of micromagnetism, it is as if two extended materials exist: one soft, one hard.
Thus, a reversed domain may be created under a low applied field H, < H, in the
soft material, like in any extended system made of a soft magnetic material. Once
the reversed domain is nucleated, a domain wall will be located at each boundary
with the hard magnetic material, requiring a larger value of applied field to allow
its propagation into the hard phase. Simple arguments considering energies and
length scales as above, show that the propagation field scales with H,, while the
exact calculation provides: H, = Ha/4[129, 130].

The second case considered is a linear variation of K(x). The nucleation
or propagation fields may then both be as small as desired, by choosing a
small gradient of energy, in other words a large d. This model was revived
recently by the proposal of the use of grains for hard disk drive media with a
spatially graded anisotropy. These allow to decrease the switching field thanks to
the moderate gradient of energy, while preventing spontaneous magnetization
switching thanks to the height of the energy barrier still related to K,[131].

@ Angular dependance of coercivity as a probe of the reversal mech-
anism. In the series of examples above we illustrated the concepts of
nucleation and propagation phenomena, used to describe magnetiza-
tion reversal in extended materials. The examination of the angular
variation of coercivity is a mean widely used to determine which is the
phenomenon limiting magnetization reversal. In practice the situation
may be less clear, as there is no strict border between the two phenom-

ena.
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Switching versus coercive fields. Remember that the Stoner-
Wohlfarth model predicts the switching field, which coincides with the

coercive field only for |6 < 7/4|. Thus, for the analysis of the angular
variation of magnetization reversal over a large range to determine
whether nucleation or propagation is the best description for magneti-
zation reversal, what needs to be measured is the switching field, related
to irreversible events only. One way to do this is apply a negative
field of given magnitude, then measure the resulting magnetization
when back to remanence. This eliminates irrelevant processes from
the measurement, such as the reversible rotation of magnetization in
domains.

3.3 Activation volume

In part sec.1.1 we derived an expression for the energy barrier of a macrospin,
involving the product KV [Eq.(I1l.3)]. Here we introduce a similar concept for the
phenomenological description of extended systems. Right above we discussed
that in extended systems magnetization reversal may be determined by local
processes such as nucleation, pinning and propagation of domain walls. Thus,
the energy barrier preventing magnetization reversal concerns a volume much
smaller than its total volume V. We shall name it an activation volume and write
it V5. In Eq.(I11.3) V shall thus be replaced with V,. Note that the name and writing
nucleation volume V, is also often used, however it introduces some confusion
with the nucleation and propagation processes, as here we aim at describing any
type of thermally-activated magnetization process. We will thus stick to the name
activation.

Besides, due to extrinsic or intrinsic deviations from the macrospin situation,
switching will occur before H reaches H,. We shall therefore replace the latter
with a parameter H.,, the coercive field in the limit of zero temperature. Also, the
magnetization process may involve energies other than magnetocrystalline, such
as exchange energy. While detailed models take this into account, for the sake
of simplicity we will keep K here. Finally, the power law may be different from
a square law, depending on the situation and thus its modeling. In the end we
generalize Eq.(l11.3) with the expression:

H [0
AE = KV, (1 — Hc,o) (11.13)

where « is an exponent a priori not equal to 2. This expression determines the
time and temperature dependence of magnetization processes as in sec.1.2. A
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similar analysis yields the following relationship:

w] oI |:kBT|n(7'/TO)}

| —
aln |:1 KV,

(M.g)

c,0

Experimentally, plotting In(1 — H/H.,) versus InT or In(In7) allows to extract
numbers for a and V,. In practice V, is of the order of 43 with § the domain
wall width. The plots and notably the value of o, compared to various models
for magnetization reversal, provide hints for the processes at play in determining
coercivity. It may thus be used to compare various samples and improve their
properties. However several possible biases must be present:

« The anisotropy coefficients are temperature-dependent. Not only the real
K(T) function should be used in Eq.(lll.14), but deriving this equation in
practical cases shows that a correction should also be included along side
in Heo.

« The determination of H., is required for these plots, although measure-
ments can never be performed at strictly zero temperature. As the varia-
tion of coercivity is expected (and confirmed) to increase at low tempera-
ture (Figure 111.3), extrapolation from a series of measurements at several
temperatures is required.

+ Magnetization processes may vary with temperature, affecting this formula.
For example a may be obtained as an expansion in models, so that depend-
ing on the temperature range and thus height of the barrier probed the
effective « will vary.

In the next paragraph we give a few simple examples of energy barriers.

@f\, The time or temperature dependence of coercivity may be analyzed to
provide indications of the microscopic mechanisms determining mag-
netization reversal.

3.4 Practical cases and models

A one-dimensional energy landscape may be described locally with the following
expansion:
e=ax+bx*+oc+dx*+ ... (11.15)

Here dimensionless variables are used. x is the internal degree of freedom
describing the state of the system, and a to d are coefficients depending on the
applied field h. The latter are assumed to display no specific feature such as
singularities, and may thus be expanded linearly at any location. This expression
may describe many situations, where x stands for the location of a domain wall,
direction of magnetization: in a macrospin, a domain wall or nucleation volume.
Besides, it is suitable to describe magnetization reversal as well as moderate
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deviations from uniform magnetization, such as edge domains, curling structures
etc.

We consider the above expression to describe a system in a local energy
minimum at x,,, being metastable however not the lowest energy state. We
aim at determining the field-dependent energy barrier preventing magnetization
switching. Only results are provided here; more details can be found in problem...
A thorough discussion can be found in Ref.[2]. Notice that in general x,, depends
on h. To go further it is useful to consider the symmetry around the local energy
minimum. For symmetric and non-symmetric barriers it is always possible to
rewrite Eq.(l1l.15) in the respective forms:

e =b2+dgé+ ... (111.16)

€ =2@aX+¢3)+ ... (M.a7)

X = X —Xo, where x,(h) = xp(h) for a symmetric barrier (in general x,, is independent
from h), and x,(h) is the locus of the inflexion point on the side of lowest energy
barrier for asymmetric barriers. We end up in purely even and odd functions. In
the even situation an irreversible event is described by d < o0 and b changing sign
from positive to negative (Figure Ill.12a). The energy barrier is then characterized
by o = 2. This situation boils down to the Landau functional describing phase
transitions, and describes for example magnetization switching of a macrospin
with magnetic field applied exactly along an easy axis of magnetization [Eq.(Ill.1)];
x is in that case 6, the direction of magnetization. In the odd case an irreversible
event is characterized by arvitrary ¢ and & changing sign from initially opposite
to the same sign as ¢ (Figure Ill.12b). The energy barrier is then characterized by
o = 1.5. This situation is that found in the Becker-Kondorski model, where x is
the locus of the domain wall. It is also the case of magnetization switching of a
macrospin with the magnetic field applied away from an easy axis of anisotropy.
With this in mind, it is clear that the odd case is the general situation, while the
even case is an exception. It can be checked mathematically that the transforma-
tion from Eq.(Ill.15) to Eq.(l1l.17) is in general always possible, while transformation
to Eq.(111.16) requires special relationships between the coefficients. Thus the
barrier exponent « = 1.5 is the most common case[132]. The above examples are
simplified pictures of nucleation and propagation events in extended systems.

When one tries to describe in more detail or more realistically real nucle-
ation and propagation events, the resulting models may not be described by a
polynomial function such as Eq.(lll.15) with barriers canceling around symmetric
or asymmetric energy wells. Laws for energy barriers scaling with H=* may be
derived in some cases, as detailed below.

An example of such a model for nucleation is the droplet model, topic for
problem 5. This model gets its name from the analogy with supercooled in hy-
drodynamics, where the temperature driving force for vaporization is contained
by the cost of surface energy required to create a bubble of gas in the liquid. Let
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Figure 11l.12 - Evolution of symmetric and antisymmetric energy barriers up
to switching.

us consider the case of a thin film, initially uniformly magnetized. The picture for
a nucleation bubble consists of a circular domain with reversed magnetization,
separated from the rest of the film by a domain wall. If one considers a bubble
large enough so that the domain wall can be identified clearly, the energy of a
bubble with radius R reads:

E(R) = (2mRMy — 2TR? poMsH) t. (111.18)

The first term is the cost for the domain wall with energy per unit area I, while
the second is the gain in Zeeman energy inside the bubble. No bubble (R = 0)
is a local minimum due to the linear cost in wall energy, i.e. it is a metastable
solution, while above a critical radius the quadratic gain in Zeeman energy drives
the expansion of the bubble. These two limiting cases are bounded by an energy
maximum for a critical radius R, i.e. spotting an unstable equilibrium situation
whose crossing means nucleation. The associated energy barrier is readily
calculated as AE = nl}t/(2uoMsH). The energy barrier does not vanish for any
finite value of applied field, so that no barrier exponent may be defined. The use
of the Arrhenius law yields the temperature dependance of the nucleation field:
Ho(T) = (w/2)(tI2)/[1oMsksT In(7/75)]. As expected the nucleation field decreases
with increasing temperature. Other droplet models can be developed for specific
geometries of finite-size systems, such as at the edge of a finite-size platelet[133]
or strip[134, 135]. Other variational parameters may be used besides the bubble
radius, such as to describe a non-circular shape, however its main features remain
qualitatively valid. Note that if in the above we assume I, ~ v/AK and the wall
width scales like 4, = \/A/K, then A& ~ tA3K. The later can be understood in
terms of an activation volume, scaling like tA3 (thickness times the minimum area
of a domain wall).
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Validity of droplet models. Droplet models may be suited for a high

temperature regime, however they fail at low temperature where the

\ nucleation volume shrinks and thus the picture of a well-defined domain
wall is not valid. A micromagnetic model must instead be used.

As regards propagation, a one-dimensional picture may not be sufficient to de-
scribe a domain wall. Random-pinning models have been proven experimentally
to be quite successful for describing a two-dimensional energy landscape within
which a domain wall may meander to find its way at the lowest cost of energy. The
theory weighs the cost in elastic energy (length of the domain wall) with the trend
for the wall to meander through randomly-distributed places of low local energy.
Its derivation is rather complex and makes use of microscopic parameters such
as energy and length scales characterizing the energy landscape, and predicts
that 1 = 1/4[136]. At finite temperature and under an applied magnetic field
the domain wall resides essentially at rest for some time in a given configura-
tion, before a burst of thermal energy allows it to cross an energy barrier. It
then propagates over a certain distance before it is again blocked until another
activation event may allow its further progress. This way of propagation with
discrete jumps is called the creep regime and is a common feature of thin films
with a non-negligible distribution of defects or spatial fluctuations of magnetic
anisotropy, and subject to a magnetic field of moderate magnitude. The creep
regime is a possible microscopic mechanism for the long-recognized Barkhausen
jumps measured macroscopically. Investigation of this regime informs us about
the local fluctuations in the film.

Similar to the simplest picture of the Becker-Kondorski model, domain walls
may propagate continuously even through distributed pinning sites if a magnetic
field of sufficient magnitude is applied. This is the so-called flow regime, whose
nature is intrinsically precessional and will thus be described in the next chapter.

Summary

Magnetization reversal in extended systems. Magnetization reversal occurs gen-
erally by the nucleation of one or several small volumes with reversed magnetization,
followed by propagation of domain walls reversing the remaining of the system.
Both phenomena are thermally-activated, and can be described by models to extract
microscopic information about the material and the defects or geometric features
involved.




Problems for Chapter lli

Problem 41: Self-testing

10.

. What is the difference between the concepts of switching field and coercive

field?
In the Stoner-Wohlfarth model, for which directions of the applied magnetic
field the switching field is the smallest? The largest? What are the values?

How does the blocking temperature vary with the volume of a magnetic
system?

. What is the Langevin function, and in which case is it applied to a magnetic

system?

. What can be learned from the remanence of an assembly of small grains?
. What is curling in micromagnetism?
. A magnetic system is nearly uniformly-magnetized at rest. Do this imply

that magnetization reversal proceed following the Stoner-Wohlfarth model?

Describe the principle of the Becker-Kondorski model for domain-wall prop-
agation.

. What is the typical dimensions of a nucleation volume?

What is the scaling law describing the height of an energy barrier preventing
reversal, against the applied field? Comment on the critical exponent.

Problem 2: Short questions

1.

2.

3.

Give a realistic example of a magnetically-uniaxial system whose coercivity
H. is larger than its anisotropy field H, (the latter taking into account both
magnetocristalline and shape anisotropy for uniform magnetization).

Look closely at the switching field on the Stoner-Wohlfarth curve for 6, =
80°, Figure lll.ab. You will notice that dm/dH < o at the jump. Dlscuss
whether this violates a law of conservation of energy.

It was mentioned in chap.| (see p.17) that the remanence of a magnetic
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system is in general positive. Give an example of a magnetic system
displaying a negative remanence (hint: consider a system made of two
sub-systems with different coercivities and moments, and coupled through
an interaction, e.g. of dipolar origin). A negative remanence implies that
the up and down curves forming the hysteresis loop cross each-other.
Discuss whether or not this violates the conservation of energy based on
the argument of the area encompassed inside a hysteresis loop (Figure 1.3).

4. We consider a uniformly-magnetized system with uniaxial magneto-
crystalline anisotropy of volume density K, volume V and zero applied field.
The effect of thermal energy is taken into account with the Arrhenius law
for the waiting time to overcome an energy barrier AE: 7 = 1, expAE/kgT.
ks =~ 1.38 x 10723 S.l. is the Boltzmann constant, and 7, ~ 100 ps. Express
the height of the barrier required so that the system has not switched after
a given time 7 at a given temperature. To set numbers, we consider a
material with K = 7 x 10%)/m3 at the temperature 500 K. Provide an estimate
of the minimum length a of the edge of a cube of such material, so that
magnetization has remained stable over three years. For the numerical
estimate, you may use this approximation: In(10%) ~ 18.

5. Derive the formulas for remanence m, and remagnetization energy Ex for
the various cases of texture provided in sec.1.5.

6. Read the seminal paper of Frei about magnetization curling[100] and con-
vert the values of nucleation and coercive fields in the SI system.

7. If a system is mostly uniformly-magnetized at rest (under zero of constant

applied field), does this mean that the process for magnetization reversal is
uniform? Comment.

Problem 3: Herzer model for coercivity in nanocrys-
talline materials

The purpose of this problem is to outline trends for the coercivity of magnetic
materials made of exchange-coupled nanograins. In the entire problem we
assume that magnetostatic energy may be neglected. This is known as Herzer’s
model[137, 138].

3.1. The material

We consider a magnetic material with a uniaxial magnetic anisotropy with
magnitude per unit volume K;, spontaneous magnetization Mg and exchange
stiffness A. Based on dimensional analysis provide an expression for the domain
wall width and its areal density of energy. We will write 4, = /A/Kj the anisotropy
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Figure l1l.13 - Effective anisotropy averaged over many grains. The magnitude
of anisotropy is averaged over a large number of grains N;p within a domain wall.

exchange length of the material.

3.2. Averaging anisotropy

We consider grains of typical size d arranged in a polycristalline fashion, i.e.
with a random distribution of easy axis in space. Each grain is coupled with its
neighbors through ferromagnetic exchange.

Let us first consider two neighboring grains only. Based on simple scaling laws,
show for which range of values of d magnetization is expected to be essentially
uniform over the two grains, and on the contrary for which range the direction
of magnetization may vary significantly over the two grains. In the following we
consider the first situation.

Let us write 4;p the domain wall parameter in such a material, and consider
first a bulk material (three-dimensional). 45p is the length over which the direction
of magnetization may not vary significantly in any of the three directions. Thus
the effective anisotropy energy K;p in this volume will be that averaged over the
(large) number of grains N5p in the volume: K5p = Kg/\/N_B,D(Figure [11.13). Based on
the fact that 455 ~ /A/Ksp, provide an expression for both 4,5 and K3p. Explain
how one may infer a scaling law for the variation of coercive field with grain size d
in such a material.

3.3. Dimensionality effects

Generalize the above calculation for a two-dimensional (4,p and K,p) and one-
dimensional (4,p and K,p) material. Comment.
3.4. Numerical evaluation

We consider a material with anisotropy induction p,H, = 10 mT, spontaneous
magnetization Ms = 8 x 10°A/m, exchange stiffness A = 107"]/m and grain size
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d = 10 nm. Provide estimates for 4q, 455 and K3p. Comment.

Problem 4: A model of pinning - Kondorski’s law for
coercivity

In an extended system magnetization reversal often proceeds through nu-
cleation of small reversed domains, followed by their inflation through motion
of domain walls. Domain wall motion may however be hampered by local
heterogeneities in the material. This sets a finite value of applied field necessary
for the propagation, thus for magnetization reversal and coercive field. It is the
purpose of this problem to make the link between material inhomogeneities and
coercivity.

4.1. Energy landscape and propagation field

We consider a domain wall in a one-dimensional framework, as for deriving
the profile of the Bloch domain wall, see Pb. 5. Let us assume that the material
inhomogeneities create an energy landscape U(x) for the domain wall, where x
refers to the location of the wall, e.g. its center. Energies are expressed in J/m?,
related to the translational invariance in the two directions perpendicular to x.
Assuming that an applied field does not change significantly the profile of the
domain wall, and hence its internal energy U(x), consider the extra term of the
Zeeman energy to derive a condition defining the propagation field. The magnetic
is applied along the direction of magnetization in the domains.

4.2. An example of energy landscape

Starting from a homogeneous material let us model a local defect in the form
of a magnetically softer (i.e. anisotropy constant K — AK with AK > 0) insertion of
width ¢4, located at position x = 0. Discuss what approach should be followed
if one wished to derive exactly the profile of the domain wall, especially the
boundary conditions at the edges of the defect. Past these considerations, to
handle simple algebra we make the assumption of a rigid domain wall, i.e. Eq.(l.41)
still holds:

f(u) = 2 arctan (exp UA_ X) (11l.19)

u

where x is the locus of the center of the domain wall. We also assume that the
defect is a perturbation, in the sense that /¢ < 4,.

Under these conditions, show that the energy of the domain wall with center
at location x reads:

Ux) = avAK |1 1OLAK 1 (111.20)
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Draw a schematic graph of U(x) and display the characteristic length or energy
scales.

4.3. The propagation field

An external field is then applied along the easy axis of magnetization, ie
parallel (resp. antiparallel) to magnetization in the domains. Show that the
propagation field of the domain wall over the defect reads:

_,, AK o 1
K 4,33
where H, = 2K/u,Ms is the so-called anisotropy field. How is this law modified

when the field is now applied with an angle 6y with respect to the easy axis
direction in the domains? To do this, assume that H <« H,

Hp (111.21)

Notice:

* The 1/ cos 0 dependence of coercivity is often considered as a signature a
weak-pinning mechanism, a law known as the Kondorski model[127].

+ This model had been initially published in 1939 by Becker and Doéring[139],
and is summarized e.g. in the book of Skomski: Simple models of Mag-
netism[s].

« While coercivity requires a high anisotropy, the latter is not a sufficient con-
dition to have a high coercivity. To achieve this one must prevent magneti-
zation reversal that can be initiated on defects (structural or geometric) and
switch the entire magnetization by propagation of a domain wall. In a short-
hand classification one distinguishes coercivity made possible by hindering
nucleation, or hindering the propagation of domain walls. In reality both
phenomena are often intermixed. Here we modeled an example of pinning.

+ Simple micromagnetic models of nucleation on defects[129] were the first to
be exhibited to tentatively explain the so-called Brown paradox, i.e. the fact
that values of experimental values of coercivity in most samples are smaller
or much smaller than the values predicted by the ideal model of coherent
rotation[91].

Problem 5: Droplet model for nucleation

Here we are concerned with a simple model of nucleation of a reversed
domain in a material with magnetization Ms and exchange stiffness A. Starting
from a uniformly-magnetized domain, we assume that a so-called bubble of
radius R of reversed magnetization is nucleated thanks to a thermal fluctuation.
We examine whether the bubble expands or collapses, subject to an external field
applied antiparallel to the initial direction of magnetization. Let us write [y the
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energy per unit area of the domain wall between the non-reversed domain and
the interior of the bubble. For numerical evaluation we will consider K = 10°)/m3
and A=10""A/m. We recall: kg =1.38 x 1072 m?-kg-s 2.

5.1. Three-dimensional case

We consider a bulk material, so the bubble is a sphere.

1.

Based on crude geometrical approximations, write the total energy of the
bubble E(R), taking into account the wall energy and the Zeeman energy.
Find the stable and unstable positions for £(R), the latter defining the critical
radius R. that you shall write. Make a sketch for €. Describe the evolution of
the bubble depending on the value of its radius.

Calculate the energy barrier AE = E(R.) — £(0) to be overcome so that
nucleation is successful and leads to the propagation of the domain wall
on a long scale in the domain.

Assume an Arrhenius law for overcoming the barrier by thermal fluctua-
tions: the mean waiting time is 7 = 7,exp (A€ /kgT). From this, calculate
the expected thermal variation of the coercive field H.(T) for a given waiting
time 7.

. We now assume Iy = vAK, and a domain wall width § = \/A/K. Explain why

the model may be valid only if R. £ . Write what condition this sets on H.
Calculate the coercive field at this cross-over. Comment.

Rewrite H.(T) using A and K, and provide a rough numerical evaluation for
the cross-over temperature based on In(7/7,) = 25.

5.2. Two-dimensional case

We consider now a film with thickness t, so that the bubble is a disk with
thickness t and radius R.

1. Calculate again the energy barrier and the critical radius.
2. Calculate the temperature dependence of the coercive field, and the cross-

over temperature. Provide a numerical evaluation for the cross-over tem-
perature for t = 1nm. Comment about the coercive field expected at room
temperature.

5.3. One-dimensional case

We consider now consider a wire with a cross-section with area S, so that the
bubble is a segment of wire with length 2R.

1.

Explain why the previous calculations cannot be extended to one dimension
asis. Explain why you may write as an approximation, instead: AE = (8vVAK—
4poMsH+/A/K)S.

2. Derive H.(T) from the above expression.
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3. Show that the system becomes superparamagnetic, and provide an expres-
sion for the blocking temperature Tg. Make a numerical evaluation for
section S =107 m2,



Chapter IV

Precessional dynamics of
magnetization

Overview

In the previous chapters we have considered the arrangement of magnetization
at rest, then its quasistatic evolution with time. At typically the nanosecond time
scale a crossover occurs, below which the time evolution of magnetization is mostly
governed by precession around the local effective magnetic field. The resulting
phenomena are drastically different, and request specific consideration. In this
chapter we review the physics of spin precession, and then examine a few cases of
precessional dynamics in nanomagnetism: ferromagnetic resonance, precessional
switching of magnetization, and domain wall motion.

138
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1 Ferromagnetic resonance and Landau-Lifshitz-
Gilbert equation

Only simple features of precession of magnetization are described in the follow-
ing, meant as an introduction to the topic. More detailed and rigorous coverage
may be found elsewhere, e.g. in the book of D. D. Stancil and A. Prabhakar[140].

1.1 Precession

Precession of magnetization around a magnetic field is the direct consequence
of the angular momentum underlying magnetic moments. Let us first consider
a magnetic moment p of purely orbital nature (i.e., no contribution from spins),
modeled in a classical fashion with a circular loop of current: u = S/. Sis the vector
area normal to the loop of current, and / is the current flowing in the loop. Itis
readily shown that

e
=—/ V.
h=_ (IV.1)

where e is the charge of the charge carrier, m its mass and £ = r x p its angular
momentum. v = e/2m is called the gyromagnetic ratio. Note that v is negative for
electrons, which thus have angular momentum and magnetic moment pointing
along opposite directions. Classical mechanics states that the time evolution
of the angular momentum obeys £ = T with T the mechanical torque, here of
magnetic origin and equal to u,u x H. From this we derive the time evolution for
the magnetic moment:

1= poyp x H (IV.2)

/\ The gyromagnetic ratio v (and ~,) is negative for an electron, due to its

( negative charge. Thus, in most works the choice has been made to write
/ ~ as a positive quantity, and insert the minus sign in the equation. Other

works consider « as negative. To avoid ambiguity, here we write — || in
place of », restricting the discussion to v < 0. This means that || should
be replaced with — || in case a material with positive gyromagnetic ratio
is considered, e.g. with a band structure such that magnetism is related
to holes.

Expression Eq.(IV.2) remains valid for magnetic moments with both orbital and
spin contributions to the angular momentum, introducing the Landé factor in the
gyromagnetic ratio: v = ge/2m (g = 1 for orbital magnetic moments, g ~ 2 for spin
magnetic moments). In the following we use the notation 7, = 1,y for the sake of
concision. Again, note that 7, < o for electrons, while some authors define it as
positive, requiring a minus sign in Eq.(1V.2). Eq.(IV.2) is straightforward to solve in
the case of a constant magnetic field H:
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Figure 1V.1 - Precession of a magnetic moment p around a magnetic field. The
thick line is the energy-conservative trajectory, while the thinner one along with
arrows indicates the trajectory of magnetization when damping is considered.

Hx Hx Y
fy = oyl | my | X Y (IV.3)
Lz Hz Ho
Hy
—pol Yl | —x | Ho (IV.4)
0]

Let us write H = Ho,Z with H, > 0, u = ;i using Einstein’s compact notation, and
introduce the complex number Z = p, + ip,. From Eq.(IV.3) it follows that p, is
constant and Z(t) = iw,Z, With w, = 170|Ho. We have readily Z = Z,e“*': the moment
is precessing around the applied field with the angular frequency w, (Figure IV.1).

o

v|/2m is often expressed in frequency per tesla. |y|/2r =
14 GHz/T for orbital moments, and |y|/2r ~ 28 GHz/T for spin
moments.

* The precession angular frequency w, does not depend on the
angle between the moment and the magnetic field.

+ The trajectory of the moment is energy conservative, as its projec-
tion along the applied field remains constant. This is an obvious
consequence of the fact that the Lorentz force, at the base of
Eq.(IV.2), is energy conservative.
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1.2 Ferromagnetic resonance

When normalized per unit volume Eq.(IV.2) converts to magnetization:
m=—|y|/mxH (IV.5)

The possibility to drive precession of magnetization at a specific frequency
in ferromagnetic bodies was discovered by Griffiths in 1946[141]; this is called
ferromagnetic resonance (FMR). The discrepancy between the observed angular
frequency with that expected from the above was soon solved by Kittel[142]. It is
these arguments that we describe below.

In practice, a constant magnetic field is applied to align magnetization along
a given direction, while precession is driven by a sinusoidal field of much small
magnitude applied along a transverse direction. Precession is usually monitored
through the losses of the transverse oscillatory field driving precession. The
difference with the previous part comes from the fact that in matter not only
the external field will be felt by magnetization, but also all fields deriving from the
local density of internal energy Ei:. Formally, H must thus be replaced with an

effective field defined as
5Et0t

oM

It is clear that the above generalization is consistent with the torque provided by
the external field, and derived from the Zeeman energy. New terms in matter
are the magnetostatic field Hy, and those microscopic terms associated e.g. with
magnetocrystalline or exchange energies, introduced in sec.l.3.

(1v.6)

toHefs = —

\ Exchange and anisotropy fields are written Hex = (2A/poMs)Am and

. H¢ = (K/uoMs)Vmfx(m), with f the dimensionless anisotropy func-
tion (see Pb. 3).

Detailed discussion of ferromagnetic resonance in an arbitrary landscape of
total energy may be found elsewhere[143-145]. In the following we restrict the
discussion to the prototypical case of uniform magnetization in a soft magnetic
material, and consider only the magnetostatic fields in addition to the applied
field. We assume that the demagnetizing field is uniform and may be expressed
based on demagnetizing coefficients. Finally, only small angle precession around
Zis considered as is the case in most ferromagnetic resonance experiments. This
permits to derive simple formulas through Taylor expansions, while in general the
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angular frequency of motion depends on its amplitude. Eq.(1V.5) is rewritten:

my —N,m, M
m=—yl | m, | x —N,my,Ms : (IV.7)
mz HO - szzMS

Although this set of equations can again be solved elegantly using a complex
variable Z defined from a linear combination of m, and m,, let us use another
method. Eq.(IV.7) is first expanded:

my my(Ho, — N,m,Ms) + m,N,m,Ms
rhy = _|’YO| _mZNxmes - mx(Ho - szzMs) . (IV'S)
rhz _meymyMS + myNmeMS

m, is of second order with respect to the small transverse components m, and m,.
We can thus assume that m,(t) = 1 and the above equations become:

[’;’)X my [Ho + (Ny - NZ)MS}
f;’)y = _|'70| —Mmy [Ho +(Ny — NZ)MS] (IV'9)
m, 0

Then, differentiating the first line and replacing m, with the second one, one gets:
m = —2 [Ho + (N, — N)Ms)] - [Ho + (Ny — N;)Ms)Im (IV.10)

Thus my(t) = my, cos(wot) and my(t) = my, sin(wot), with the following relationships:

Wo = |’70|\/ [Ho + (N — NM:] - [Ho + (N, — N)Ms] (IV.1)
My0\/Ho + (Nx — N)Ms = my o+/Ho + (N, — N,)Ms (IV.12)

The motion is thus an elliptical precession with angular frequency w,. Note that
the previous case of an isolated moment is retrieved for N/’s all zero. Itis also valid
for a sphere of soft magnetic material, with all N; equal to 1/3. Of special interest
to discuss are the cases of a thin film, with a static field applied along either the
normal to the film, or along an in-plane direction.

Let us first discuss the case of an out-of-plane static field. The axes are chosen
such that N, = 1is associated with the perpendicular direction, while for in-plane
directions N, = N, = 0. The above equations become:

Vo|(Ho — M) (IV.13)
Myo = Myo (IV.14)

Wo

This case is straightforward: the trajectories are circular and the angular velocity
is constant. Note that precession occurs only when the applied field exceeds the
magnitude of magnetization (Figure IV.2b). For H, — Ms the precession frequency
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Figure IV.2 - Dispersion curves of ferromagnetic resonance in simples cases:
(a) single moment in an external field (b) thin film, field normal to the surface
(¢) thin film, field in-plane.

vanishes, as the internal field around which precession occurs goes to zero. This
is called a soft mode.

Let us now discuss the case of an in-plane static field. We simply rotate the
axes: N, = 1is associated with the perpendicular direction, while for in-plane
directions N, = N, = 0. The above equations become:

Wo _|70| V Ho(Ho + Ms) (IV.15)
MyoV Ho + Ms = my,+\/Ho (IV.16)

When the applied field is small compared with magnetization Eq.(IV.16) shows
that the trajectory is very anisotropic, with m,, < m,,. The need to conserve
energy explains this trajectory: only a weak excursion is allowed out of the plane,
because of the high cost of demagnetization energy. As a consequence the angle
with the applied field is considerably reduced when m, is maximum, so that the
Zeeman energy is then very small in absolute value. Thus, with this geometry the
precession periodically converts most of the Zeeman energy into demagnetizing
energy and vice versa. The angular velocity reaches a maximum when the
perpendicular component of magnetization m, is maximum. The asymptotic
dependences are: w, ~ |v|v/HoMs at low field, and w, = |70|(Ho + 70Ms/2) at high
field (Figure IV.2c). The linear dependance at high field has a simple meaning:
when H, > M the situation is close to an isolated moment in a static field H,.

Here we considered precession around a main direction of the de-

~~ magnetizing tensor. This is a usual and useful situation, however it
remains a specific situation. More general formulas should be used for
precessional around an arbitrary direction[143, 144].

Historically, ferromagnetic resonance was monitored as a function of the ap-
plied field, because an efficient source (field enhancement in a metallic cavity)
existed only at fixed excitation frequency. This corresponds to horizontal cross-
sections in the graphs on Figure IV.2. Since roughly the year 2000, ferromagnetic
resonance is also implemented in broad-band devices based on strip lines. This
corresponds to vertical lines on Figure IV.2. The superiority of this approach
is first its sensitivity because it is a local measuring device, second its ability
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to monitor the response under a magnetic field of arbitrary magnitude and
notably at remanence. This opened the possibility to measure resonance modes
of non-uniformly-magnetized structures, whose arrangement of magnetization
would not be preserved upon sweeping the field in a conventional ferromagnetic
resonance setup. A drawback is the possible non-uniformity of the applied field
due to the finite width of the strip line. This may require calibration and modeling
to extract quantitative information[146].

{f;? FMR to measure gyromagnetic ratio and exchange stiffness. Ferro-

magnetic resonance is a very important technique, for its ability to mea-

sure quantities hardly accessible otherwise, such as the gyromagnetic

ratio v and exchange stiffness A (see sec.1.4). It also yields very precise
measurements of magnetization and anisotropy (see Pb. 3).

1.3 Damping and Landau-Lifshitz equations

As seen above, the precession of an isolated moment in a constant applied field
is energy conservative, and thus in principle goes on for ever. In condensed
matter, however, magnetization at a given point is coupled to the system through
the lattice (phonons), conduction electrons, and electrons on neighboring or-
bitals contributing to magnetization. Angular momentum and energy may be
exchanged with these baths, notably decreased for the latter. This is damping,
which permits that magnetization is essentially aligned along the effective field
after some time. Damping mechanisms are very complex and stochastic and can
only be taken into account analytically with a phenomenological term. Histori-
cally it was first introduced in 1935 in a form nowadays known as the Landau-
Lifshitz (LL) equation:

dm

pra — YoM x H — (A/Ms)m x (m x H). (IV.17)
In the right part of this equation, the first term is similar to the one already
discussed, and describes the energy-conservative precession. The second term
was added and it is exactly perpendicular to the energy-conservative one, while
preserving the norm of magnetization constant. It thus purely describes a
mechanism for releasing energy. The damping term is in most cases observed
to be (very) small compared to the precessional term: A/(|7o|Ms) < 1

In 1953, Gilbert made the analogy between damping and a viscous force for
a mechanical motion, opposed to the velocity: —pdm/dt. This leads to the now-
called Landau-Lifshitz-Gilbert (LLG) equation:

dm

o e eglm x Hta (m % d_“‘) . (V18)

dt
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It can be shown that the two equations are exactly equivalent mathematically,
based on a suitable conversion between the parameters ~,'s, A and «. In the limit
of low damping relevant for most experimental cases, as noticed above, one finds
with a second-order difference only: v, = 7oL, Which we will keep writing ~,, and
A = a|y|Ms. Nowadays the Landau-Lifshitz-Gilbert form is of more common use,
than the Landau-Lifshitz one. The condition of low damping is thus expressed
as a < 1. Its influence on precession may be introduced as a perturbation to
the trajectories described above. In the simple case of circular precession this
results to first order in a relative decrease of angle between M and H of 27« per
turn (Figure IV.1). The treatment of damping of a magnetic dipole moment for
ferromagnetic resonance in matter is the topic of Pb. 5.

@ Precession in magnetic recording. The characteristic time scale to
reach equilibrium is such that 1/(a-y = 1ns-T). Thus, precession of mag-
netization can no longer be ignored in magnetic storage devices with
high data throughput, both on the media and on the head side (write as

well as read head).

Fixed magnitude of M in micromagnetism. Notice that both equa-
tions thankfully preserve the norm of M, a hypothesis of micromag-
netism. Another equation was introduced to allow one to describe
mechanisms where the magnetization vector is not preserved in time
or space: the Landau-Lifshitz-Bloch equation[147]. It is more suitable
than the Landau-Lifshitz(-Gilbert) equation(s) to describe situations like
the Bloch point (see p.80), or ultrafast (de)magnetization processes[147,

148].

1.4 Spin waves

So far we have disregarded any contribution of exchange to the effective field,
which is suitable for describing uniform precession of magnetization. There also
exist non-uniform modes, for which the exchange field needs to be taken into
account: Hex = (2A/ioMs)Am. The general theory of these modes goes beyond the
purpose of these notes. Only a textbook case is covered here.

In sec.1.1 we described precession of a moment pu around a magnetic field
using the complex function Z = Z,e™*, standing for the components y,(t) = Re(2)
and py,(t) = Jm(2), while 1, ~ 1. Let us extend this notation to describe modes of
the form:

7 = Z,ek (IV.19)

Figure IV.3 illustrates the situation of so-called transverse spin waves, with mag-
netization pointing along Z and k chosen along the transverse x direction. When
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Figure IV.3 - Spin waves. Schematics for spin waves of the form Z = Z,e/k*«)
with (a) k > o (propagating towards —X) and (b) kK < o (propagating towards +Xx).

computing the exchange field, Am is described by 9°Z/0x* = —k*Z. The LLG
equation

dm
dt
is described with the complex notation:

= vom X (Hy + Hey) (IV.20)

dz 2A
iZ|vo|Ho + ik*Z ) V.21
a0 [YolHo +1 (uol\/ls) %ol (IV.21)

This may be written dZ/dt = i|,|wkZ with:

Wk = wo + kK2A3wp (IV.22)

with wy = |70|Ms, and still w, = |70|Ho. This simple non-uniform mode has a larger
angular frequency than the uniform mode, characterized by a quadratic variation
with the wave vector k. Forward and backward motion are here equivalent.
The w(k) dispersion curve may be measured experimentally, using e.g. neutron
scattering. This approach is one of the rare techniques providing a direct estimate
for the exchange stiffness A.

Summary

Ferromagnetic resonance and Landau-Lifshitz-Gilbert equation. Magnetization
is a consequence of the angular momentum carried by the charged particles elec-
trons, whose dynamics is governed by torques. Its motion is thereby of precessional
nature. It is described by the Landau-Lifshitz-Gilbert equation, in which damping is
described phenomenologically. Among the prominent phenomena are resonance et
given frequencies, and propagating modes called spin waves.
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Figure IV.4 - A clever experiment to evidence precessional switching. Ring-
shaped reversed domains (dark contrast) induced by precessional magnetization
switching of a thin Co film initially uniformly-magnetized, with uniaxial magnetic
anisotropy in-the-plane along Xx[149].

2 Precessional switching of macrospins driven by
magnetic fields

In the previous section the ground for the LLG equation was set. Simple trajec-
tories were discussed with or without damping, especially the free precession
around a constant magnetic field. Since the late 1990’s precession was used in
conjunction with nanosecond pulses of magnetic field, to switch magnetization
through precessional (ballistic) trajectories. It can be faster and more energy-
efficient for switching magnetization than quasistatic fields.

2.1 The role of shape anisotropy

In 1999 Ch. BACK et al. reported an experiment, which opened the field of
precessional switching of magnetization[149]. They used a 7 = 4.4 ps-long pulse
of the beam of a particule acceleratorV' along the normal to a thin film with in-
plane magnetization, initially prepared with uniform magnetization aligned along
an easy axis. Observation of the sample after the shot showed that domains of
reversed magnetization had appeared, shaped like concentric crescents around
the impact (Figure IV.4). What is the physics at play, and what do we learn from
this experiment?

Let us make a handwaving description, before we derive equations. The
dynamics of magnetization is driven by the in-plane orthoradial CErsted field
created by the current associated to the beam of charged particles. Thanks to the
cylindrical symmetry of the beam and the 1/r radial dependence of the strength
of the (Ersted field, the physics of the effect on magnetization of a pulse of

VASLAC: Stanford Linear Accelerator Center



148 CHAPTER IV. PRECESSIONAL DYNAMICS OF MAGNETIZATION

magnetic field of arbitrary magnitude and orientation could be derived based on
the location-dependent effect observed on the sample. While the initial direction
of magnetization is along +x, let us consider the case where the (Ersted field
is applied along the perpendicular direction +y, and ignore damping. Following
Eq.(IV.5) m is initially along —z and drives magnetization towards below the plane
of the film. At later stages, this gives rise to a demagnetization field along +Z,
which adds to the effective field. It results in a new component of m aligned
along +y. Very rapidly the demagnetizing field becomes the leading term in the
effective field against the (Ersted field, so that the main feature of motion is the
precession of magnetization around its own demagnetizing field. Another way of
seeing this is a large-angle precession around the applied field. As discussed for
FMR (Figure 1.2), the trajectory is very flat, due to the need to convert Zeeman
energy into demagnetizing energy. The angular frequency of motion is expected
to increase with the magnitude of the applied field, and thus be larger closer to
the impact. The final state long after the beam has terminated, depends on the
period T of precession compared with the fixed duration 7 of the pulse of field.
For T = 27 the magnetization performs half a turn, meaning final alignement
along —x and thus switching. This is the most outer crescent with magnetization
reversed. Further inside T = 7: the magnetization makes one turn and falls back
along its initial direction. Still further inside 3/2 turns lead again to magnetization
switching.

/@. Note on Figure IV.4 that no switching occurs with the field aligned close
to parallel or antiparallel to initial magnetization, because in those cases
the transient torque acting on magnetization is close to zero. This

and the symmetry of the pattern highlights the fundamental difference

between precessional switching and quasistatic switching, in which case

switching would only occur in the upper panel (y > o to get a negative

Hy).

The trajectories described above can be computed exactly when damping
is neglected. As an alternative to the integration of differential equations as
performed in the FMR section, one can derive analytically the trajectory from
the conservation of energy? While the general case involves non-standard
functions, in the absence of magnetocrystalline anisotropy it simply reads E =
—poMzhm, + (1/2)puMZmz. Here h is the applied field normalized with magne-
tization. Combined with the constraint m?> = 1 this provides the projection of
the equation of motion in all three planes. Alternatively the trajectory can be
described parametrically using m, as a parameter:

m? (IV.23)
1+ h?

1

2hm,

mz +(m, + h)?

3+ m2 + mé (ah?)
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Figure IV.5 - Precessional switching of a thin film with zero in-plane
anisotropy, out-of-plane demagnetizing coefficient 1, and no damping. Trajec-
tories followed by magnetization during switching for h = 0.04: projection along
the three main planes, and three-dimensional view.

They are plotted on Figure IV.5. We recognize the large-angle precession around
the applied field, expected from the above handwaving discussion. So, the
determination of trajectories from energy conservation is a powerful method,
however, it does not provide the time-evolution nor the precession frequency.

2.2 Setting-in in-plane uniaxial anisotropy

The case of a thin film or flat nanostructure with a uniaxial anisotropy between
two in-plane axes is directly relevant in the context of magnetization switching,
and is richer in terms of physics. The detailed calculation is proposed in Pb. 2,
and the resulting trajectories are plotted in Figure IV.6. We define the anisotropy
field as usual as Hx = 2K/u,Ms, and hx = Hx/Ms for the dimensionless variable.
In this case a threshold appears in terms of applied field. For h < hy/2 the
trajectories do not cross the plane m, = o. Switching does not occur and
moderate-angle precession occurs around the combined applied and anisotropy
fields, in a direction intermediate between +X and +y. For h > hi /2 the trajectory
crosses the plane my; switching is again possible, as in the case of zero anisotropy.

It is interesting to understand why the threshold field for precessional switch-
ing is hx/2, while the quasistatic switching field in the Stoner-Wohlfarth model
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Figure IV.6 - Precessional switching of a thin film with in-plane uniaxial
anisotropy (anisotropy field hg, expressed in Ms units), out-of-plane demagnetiz-
ing coefficient 1, and no damping. Trajectories followed by magnetization during
switching for various values of applied field h: projection along the three main
planes, and three-dimensional view.

is hyx along both the easy and hard axes. The examination of energy profiles
provides the answer (Figure IV.7). In the quasistatic picture of Stoner and
Wohlfarth, magnetization switching occurs when the local minimum vanishes; we
have seen in sec.lll.1.1 that this happens at hg. To the contrary, in the precessional
case the system follows an iso-energy path. Thus, magnetization switching may
be possible when the starting point # = 0 and the passing point allowing reversal
have an equal energy, which happens to be for hx/2 with the energy maximum
being at § = 7/2. The disappearance of a local minimum is not relevant because
the system does not remain at the bottom of energy wells in the precessional
regime; it does so only in the quasistatic regime.
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Figure IV.7 - Energy in precessional switching. Energy landscape (uniaxial
anisotropy plus Zeeman energy) for the external field applied along y, i.e. the
in-plane hard axis along 6 = 90°. Landscapes are plotted for field values ranging
from zero to half the anisotropy field.

We now discuss the angular frequency when precessional switching is pos-
sible, i.e. for h > hg/2. While the time-integration of the LLG equations is
possible analytically, it involves non-trivial functions and may not be of easy
use[150]. As one is interested to switch magnetization at low applied field, an
approached scaling law has been derived, for application with high accuracy
in the range hx/2 < h < hg, which is of direct relevance for precessional
switching[151]: wo ~ 0.847|70|/Ms(H — Hk/2). Examination of this formula along
with the corresponding trajectories brings some understanding (Figure IV.6). For
h — hg/2 the angular frequency vanishes, or in other words the period diverges.
The reason is the pinched point of the trajectory at (m,,m,) = (1,0). At this
point the anisotropy field is locally parallel to magnetization (or in other words
all first-order derivatives of the energy are zero), so that the torque exerted on
magnetization vanishes. On the reverse, for increasing field, deviations from
this approached formula become noticeable. From the mathematical point of
view (i.e., exact however not meaningful for the practical purpose of precessional
switching), at high field the precession frequency should follow the slope |, |H as
for the case of FMR with in-plane magnetization [Eq.(IV.15)], or the free precession
of a macrospin with no internal field.

2.3 Practical conditions: finite damping and pulse length

Damping, length and shape of the pulse of applied field all affect the picture
developed above. Equations can be solved analytically only to first order for small
angle precession of constant magnitude, like for the case described in Pb. 5. In
other situations no exact solution can be derived, and approximations must be
introduced[150, 151], or numerical integration of the LLG equation performed[152].
Here we only provide a qualitative picture of switching varying damping, pulse
duration and pulse shape (Figure 1V.8). Magnetization is initially along —x, and
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all directions and magnitudes of the applied field are considered. We call 64
the angle of the applied field with respect to the direction opposite to the initial
direction of magnetization.

Let us first consider the case of a square pulse of field, which was the one
we considered analytically in the absence of damping; it is displayed in the first
column of Figure IV.8. For a long pulse the switching diagram is the simplest, and
can be related to situations previously described:

« Switching occurs for most cases with field globally applied opposite to the
initial direction of magnetization, if of sufficient magnitude. The Stoner-
Wohlfarth astroid, bounded by the anisotropy field, can be recognized close
to the origin. This is consistent with the quasistatic picture.

+ Switching does not occur for most fields applied globally parallel to the ini-
tial direction of magnetization. This is again consistent with the quasistatic
picture.

* In a narrow range around 6y ~ +7/2, switched and non-switched regions
alternate regularly. This is consistent with the picture described for pre-
cessional switching with no damping and no anisotropy, although here
anisotropy is present.

For short pulse duration the diagram of switching is the richest, displaying
complex curved stripes. Remember that no reversal in the final state does not
mean that significant precession has not occurred, as it can result from an even
number of half-turns. A few noticeable facts are the following:

« Stripes are very densely packed close to 64 = 0. In practice, this means that
switching is very sensitive to the initial conditions and to any perturbation
or deviations of the material properties.

* No switching occurs for 37/4 < 0y < 57/4. It can easily be shown that the
energy barrier cannot be crossed, so precessional switching is not effective.

+ The largest pocket allowing switching is located around 6. This is consistent
with Figure IV.7 which shows that the energy barrier vanishes first for this
angle. This highlights that precessional swithing is most efficient at crossed
angle.

For intermediate pulse width the features aer intermediate.

The effect of broadening the pulse is to dramatically smoothen the switching
diagram, towards the quasistatic features. This is clear in Figure 1V.8f which looks
like the Stoner-Wohlfarth astroid.

Summary

Precessional switching of macrospins driven by magnetic fields. Precessional
magnetization switching, relevant at time scales below typically 1 ns, displays features
dramatically different from quasistatic switching. The most efficient switching in
terms of magnitude and length of pulse, is when the field is applied at right angle




IV.2. PRECESSIONAL SWITCHING OF MACROSPINS DRIVEN BY MAGNETIC FIELDS 153

B ]
e

relaxation time limit (pulse length = 2.75 ns)

Figure IV.8 - Transition from precessional switching to quasistatic switching.
Diagrams of switching versus the components of applied Hy and H,, based on
macrospin precessional simulations of a flat element with demagnetizing factors
Ny = 0.008, N, = 0.012 and N, = 0.980 and spontaneous magnetization poMs =
1.08 T. This implies and in-plane anisotropy field of 4.32mT. The damping is a =
0.008. The initial direction of magnetization is along —X, and light areas mean
switching. Each circle designates an increment of field of 2.5 mT.
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with the initial direction of magnetization, because the torque driven precession is
maximum. However, ringing and multiple precession may occur, which makes the
process sensitive to initial conditions and distributions of properties. It is therefore
not realistic to implement it as such in devices.

3 Precessional motion of domain walls and vortices
driven by a magnetic field

The formalism to describe the precessional nature underlying domain wall mo-
tion, is very similar to the one related to magnetization switching, detailed in
the previous section. In the following we consider situations with increasing
complexity, to introduce the various effects at play one by one.

We consider in all cases a one-dimensional model of domain wall, with magne-
tization m(z) varying between two domains aligned along +Z and —2Z (Figure 1V.9).
This head-to-head orientation of domains is suitable to describe strips with
in-plane magnetization, with magnetization in the domains aligned along the
strip length, which we will use as a prototypical case to illustrate this section.
Nevertheless, the equations can be transposed to other situations, e.g. strips with
perpendicular magnetization, or thin films with magnetization perpendicular to Z
in the domains. We will make use of spherical coordinates around this Z direction
to describe the direction of magnetization, with # =< m, Z >, and ¢ the transverse
azimuth of magnetization (Figure ??). A magnetic field H will be applied along Z.
While the situation may be described more rigorously by considering the entire
domain wall, here we will derive most of the physics considering the dynamics at
the center of the domain wall. Finally, note that the wall width will be called 74,
defined such that df/dz = 1/A at the center of the wall.

@_ﬁ Considering the center of the domain wall can be legitimated by the fact
that is it where the torque arising from the applied field is the largest.
Besides, as the curvature of 6(2) is zero at this point, there is no exchange

contribution to magnetization dynamics. This boils the problem down

to considering the domain wall as a macrospin, similar to the situation

describing the transition between Bloch and Néel walls in thin films (see

p.74).

3.1 Domain walls - The case of azimuthal isotropy

In a first step we disregard any transverse anisotropy, so that magnetic anisotropy
may be written £, = K, sin?#, i.e. with no dependence on ¢. At rest the wall width
is mA = wA,. This situation is analogous to that of a cylindrical wire. In the LLG
equation the dominating torque is generally the precessional one, because of the
low value of a. This torque, due to H and acting on the core of the domain wall,
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Figure IV.9 - Spherical coordinates to describe domain wall motion. The
coordinates apply equally to cylinders and strips, with Z along the axis. 7, # and
@ are the local unit vectors related to the spherical coordinates for magnetization
along the direction (6, ).

yields: m = —|y,/m x H. As m = 7 and H = HZ, m = |y,|H. Thus, the variation of
m is purely precessional, with the angular frequency ¢ = w, = |70|H. At this stage
0 remains equal to 7 /2, which means that the domain wall does not move.

@ The absence of forward motion of the domain wall if damping is not
considered, can be understood simply. If the domain were to move, this
would imply a change of energy of the system, due to the Zeeman en-
ergy of the two domains not being equal. This would be a contradiction

with the conservation of energy, as no damping is considered.

Let us now consider the damping term as a perturbation to the previous motion,
so that am x m can be approximated with —a|y,/m x (m x H). Following the
above, this torque reads —a|y|Ff X ¢ = a|y|HZ. As df/d§ = —Z for § = «/2, the
full LLG equation reads: m = |y,|H® + alv,|HZ. Identification with m = 00 + P
yield 6 = —alv0|H, also showing that the damping torque is orthogonal to the
precessional torque. The core of the wall being defined by 6 = 7/2, the variation
of 6 of this moment initially at the core of the wall, means that the wall is moving.
To convert this angular time variation into the domain wall speed, we use the
formalism of the particulate derivative of a quantity A:

DA OA

- ot +(v- V)A. (IV.24)
This equation can be understood in the following manner. DA/Dt refers to the
variation of A in the moving frame of the domain wall. This variation may come
both from the time variation of A in the fixed frame (the first term), or the fact that
the particle (here the particule is the wall) moves in the spatial field A(r) at speed
v, to that the time variation of A in the fixed frame depends also on how A varies
along the trajectory of the particle (second term). For A = 0 we have D#/Dt = o as,
by definition, as # = 7/2 at the center of the wall. As the model is unidimensional,
V-V =v 3/dz. Thus, Eq.(IV.24) boils down to: vd8/dz = —f = a|,|H. Noticing that
by definition 96/0z = 1/4, we now have the full description of the dynamics of the
domain wall:
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1Yo |H (IV.25)
oy |HA (IV.26)

4

Eq.(IV.26) can be rewritten v = puH with u = «|y,|4 the mobility. The above shows
that the main dynamics is azimuthal precession, while the forward motion is
only related to damping, yielding a very slow forward motion proportional to a.
This one-dimensional model with no azimuthal anisotropy has been validated by
numerical simulation of domain wall motion in cylindrical nanowires[153, 154].
While the model is the simplest, the experimental investigation of cylindrical wires
requires a bottom-up synthesis method such as electrochemistry performed in
the cylindrical pores of a template, followed by the dissolution of the matrix for
inspection of single wires. Domain walls in such wires have been imaged only
recently[155, 156], and their dynamic features have not been reported yet.

@,3 The above may be solved exactly and more quickly based on the
Landau-Lifshitz equation, the so-called solved form providing directly
the time-derivative of magnetization [Eq.(IV.17)]. However, the effects of

precession and damping are not as clearly highlighted as in the above.

3.2 Domain walls - The case of azimuthal anisotropy

Most one-dimensional magnetic conduits investigated so far experimentally,
consist of flat strips patterned with lithography and thin-film technology. Still
considering soft magnetic materials with in-plane magnetization as anillustration,
we call x the in-plane direction transverse to the strip, and y the direction
perpendicular to the strip (Figure IV.9). Remaining in the framework of a one-
dimensional model, we assume that the domain wall is of transverse type at
rest (see Figure 1l.15, p.88). For t < o the applied field is zero, while for t > o
the applied field is HZ.

We first describe the situation in a handwaving fashion, before deriving formal
equations. At t = o the only non-zero torque in the LLG equation is 'y, related to
the applied field H, so that Eq.(IV.25) applies, and m is along . This onset is similar
to azimuthal precession, as described in the previous paragraph. However, at
later stages the situation differs because the y component of m resulting from
azimuthal precessional, gives rise to a demagnetizing field Hq along —y, around
which precession also occurs. This situation is similar to the case of precessional
switching of a macrospin (sec.2.1). This implies a torque Iy ~ m x y oriented
along Z, contributing to the forward motion of the wall. Over time the elevation
of m along y keeps increasing, as ¢ > o due to precession around H. In turn,
this increases Hy, and the forward motion. Very soon 'y becomes large, so that
the associated damping term am x 4 ~ —a@ needs to be considered. This
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contribution opposes the one associated with precession around the applied
field. It raises with ¢, while the latter does not. Thus, after a while the system
may reach a stationary state with constant ¢, if a balance is found. Below we
derive more formal equations, to determine in which case balance occurs or not,
and what the resulting speed is.

The torque giving rise to precession around the applied field is:

Iy

_|/70| m x H

1%olH @ (IV.27)

The torque giving rise to precession around the demagnetizing field Hy =
—Mssinp y is:

My

—[7| M x Hy

[Vo|Mssinp F x y
|70|Ms sin ¢ cos ¢ Z (IV.28)

Considering damping as a perturbation m ~ 'y + Iy, so that the damping term
reads:

. n .1 . A
am x m af x []%]H P+ £|%|MS sin(2y) z}

s 1 . A
ol [Hz — ~Mssin(2y) <p] (IV.29)
The above three equations can be combined to yield the full LLG equation:
= o] (aH + ;MS sin2g) 2+ o [H - ;aMS sin(2,)| ¢ (IV.30)

A steady-state solution for m is characterized with a constant component along
2, and no component along ¢ (implying constant ). This is possible only if there
exists an azimuth ¢ for which H = (1/2)aMs sin(2y), or in other words: sin(2y) =
2H/(aMs). In this case the wall speed is determined from the Z component |, |(a/+
1/a)H ~ |7,|H/a, so that in the end the wall velocity is:

|’YO|HA
«Q

V= (IV.31)
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@ The case of strips is drastically different from the one of azimuthal
anisotropy, as now the speed is now inversely proportional to damping,
which makes a great difference as in most cases @ < 1. The reason is,
the smaller the damping, the larger sin 2 need to be to balance H in the
second term of Eq.(IV.30), so larger the elevation is, the demagnetizing

field, and hence the precession angular frequency around it.

This remains valid while H < Hy, with Hy = aMs/2 the so-called Walker field[157].
It is associated with the maximum speed vy = |7,|Ms4/2, called the Walker speed.
Above this threshold I is too large to be compensated by damping. Azimuthal
precessional occurs again as in the case of cylinders, albeit with a non-constant
angular velocity due to the difference of energy along the x and y directions. It
results in a sharp drop of the wall mobility, a phenomenon called the Walker
breakdown. For very large applied fields, it can be shown that the mobility of
the wall recovers a scaling law inversely proportional to «.

In the above we named A the wall parameter (74 is the wall width).

While it equals 4, at rest, it is no more a constant at later stages.
During motion the wall width tends to decrease, to lower the energy
of the system as the core of the domain wall is now associated with a
significant demagnetizing energy. In practice, this introduces a negative
curvature to the initially-expected linear variation of v with H. One may
account for it writing 4 = \/A/(Ku + NKy sin® ) where Ky is the magnitude
of the transverse hard anisotropy direction, and N the demagnetizing
coefficient along y[158]. This also means that the maximum velocity is
reduced, compared with the above simplified equations.

In these notes the discussion is restricted to the case of a one-dimensional
model. This hypothesis is analogous to the case of magnetization switching
described by the Stoner-Wohlfarth model. We have already mentioned that this
hypothesis can be too strong, in which case the model may largely overestimate
the actual switching field of a realistic sample. Here, for finite-width strips the
1d model overestimates the energy barrier preventing the core of the wall from
performing an azimuthal rotation, because of the hypothesis of invariance of
magnetization across the strip. Micromagnetic simulations show that a micro-
scopic scenario allows to switch the core of the wall at a threshold much below
the Walker field. Starting from a transverse wall, it consists of the nucleation of
a vortex or antivortex at the edge of the strip, which progressively inverts the
transverse component of the transverse wall by moving towards the opposite
edge. Thus, a parallel can be made with the breakdown of the Stoner-Wohlfarth
model, when incoherent switching mechanism occur, consisting of nucleation
and propagation steps. Here, in a finite-width the magnetization texture has a
2d feature; the transverse component of the wall is a 1d object, which can be
switched by the propagation of an essentially od object (the core of a vortex or
antivortex)
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Orders or magnitude are the following. In the 1D model, for « ~ 0.01 and
oMs =~ 1T, the Walker field poHw is of the order of a few millitesla, while the
Walker speed is of the order of 1km/s. In finite-width strips the Walker breakdown
occurs. In realistic systems these values are somewhat lower, mostly due to the
finite-size effect decribed above.

Summary

Domain wall motion driven by magnetic field. We considered the one-
dimensional case with a head-to-head domain wall as a model, for which all
features of the wall motion can be derived analytically, assuming some reasonable
assumptions. For cylinders the main feature is the azimuthal precessional of the wall
core around the applied field, while the wall mobility (speed over field) is low because
inversely proportional to damping «. To the contrary, for strips (characterized by
an azimuthal dependance of the demagnetizing field) the initial mobility is high and
proportional to a, before dropping at the so-called Walker field due to the reentrance
of azimuthal precession. In real strips, due to the finite width, or even more so
in extended thin films, micromagnetic processes are more complex and both the
Walker field and the speed are often reduced.




Problems for Chapter IV

Problem 41: Self-testing

1. What is the gyromagnetic ratio v? What is the difference between v and ~,?

2. Write the Landau-Lifshitz-Gilbert equation, including the precessional and
the damping terms.

3. What is the expression of the generalized effective field?

4. Describe the trajectory of magnetization for undamped precession: a. of an
isolated moment around a fixed magnetic field b. in a body subject to an
internal demagnetizing field.

5. What is a spin wave?

6. What is the most efficient direction of applied field to switch magnetization
in the precessional regime?

7. Explain why precessional switching can be achieved for a magnitude of
applied field lower than that in the Stoner-Wohlfarth model.

Problem 2: Short questions

1. Demonstrate Eq.(IV.1).

2. Following Landau-Lifshitz equations (sec.1.3), a system reaches equilibrium
if at any point the effective field is parallel to magnetization. Give an
example of a system at equilibrium where the effective field is zero, and
one with a non-zero effective field.

3. Explain what happens microscopically for the ferromagnetic resonance of
a thin film of soft magnetic material under a static perpendicular field with
magnitude smaller than magnetization.

4. In sec.1.1 we introduced the complex variable Z = py + ipy, to solve the
simple case of precession of an isolated moment. Which variable should
be introduced to address the case of precession under an in-plane static
field from Eq.(IV.7)?
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5. In Figure IV.8 no switching occurs for 37/4 < 0y < 57/4, whatever the pulse
magnitude, width and length. Proove that indeed no switching can occur.

Problem 3: Effective fields

All effective fields affect the precession of magnetization. The formulas given
in sec.1.2 are given for simple geometries and external applied field plus dipolar
field only. They need to be adapted in case magnetocrystalline anisotropy or
exchange energy contribute to internal fields. It is the purpose of this problem
to provide a glimpse on these fields and their use. In Eq.(IV.6) we introduced the
general form for the total effective field, which we will use in the following.

3.1. Anisotropy fields

1. Consider a uniaxial anisotropy of second order: £, = Ksin?6 = K(1 — m2).
Compute the associated effective field Hi, called the anisotropy field. On
one single graph, plot the energy and the field versus the direction of

magnetization, and comment.

2. Consider now a fourfold anisotropy of second order in the (x, y) plane: E; =
K, sin*6. Compute the anisotropy field. Plot again energy and field, and
comment.

3.2. The exchange field

We consider the exchange energy with volume density Eex = A (Vm;)*. Due
to the spatial derivative a variational treatment is required. Estimate the impact
of an infinitesimal functional variation ém on the total energy 6& = [, 0E dV.
Proceeding through identification with 6& = —oMs [, Hex - 6m dV, find the form
of the exchange field: Hex = (2A/11oMs)dm

3.3. Cases combining anisotropy and exchange
1. Consider a simple wall such as in sec.l.5. Compute the anisotropy and

exchange fields for the simple linear model; comment. Consider the exact
wall profile; comment about equilibrium of magnetization at any point.

Problem 4: Precessional switching of magnetization

We consider the precessional dynamics of magnetization in a uniformly-
magnetized body and neglect energy losses. We focus on a thin film infinitely
extended in the lateral directions (Figure IV.10). We assume a uniaxial anisotropy
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of second order with volume density K and easy direction along x. The system
is initially at rest with uniform magnetization along +x. Starting at time t = 0 a
constant magnetic field of strength H > o is abruptly applied along +y.

A Z

/ y
X

Figure IV.10 - Definition of axes for an extended thin film with normal along 7.

4.1. Energy

Express the volume density of energy E (Zeeman + internal) of the system in
terms of all three components of magnetization M;. Normalizing magnetization
M and magnetic field H with M; (write these m and h), and energy densities with
oMz, provide the volume density of energy e in reduced units. We will write hg
the reduced anisotropy field associated with K: Hx = 2K /(11oMs).

4.2. Equations of motion

Based on the conservation of energy, provide the equations of the trajectory
in the (x, y) plane and in the (y, 2) plane. Show that these are equations of ellipses.
4.3. Small angle precession

First consider the case h < hk. Based on the above equations sketch the

trajectories in the (x,y) and (y, z) planes. To determine the sign of m, remember
that magnetization obeys equation:

— =ym X uoH (IV.32)

where v < 0 is the gyromagnetic ratio. Comment.

4.4. Magnetization switching

Precessional switching (magnetization going from initially +x to the —x direc-
tion) may be possible if m, = o is reached on the trajectory. Still based on the
above equations, determine the value of m, for which m, may be zero. Discussing
the constraints on my, show that this condition is met if h > hx/2. Computing e
for m, = 1and m, =1, explain why switching may be possible under this condition
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whereas h > hy is required in the static Stoner-Wohlfarth model.

Problem 5: Damping

We consider precession around a magnetic field of constant magnitude H,,
as in sec.1.1. Being an external field, H, does not depend on the direction of
magnetization. We will use spherical coordinates, with the z axis chosen along H,.
The unit vectors will be named 7, 6 and ¢. Damping is accounted for with the LLG
equation, with damping parameter « (sec.1.3). We will derive solutions in the limit
a < 1, for which damping effects will be treated pertubatively.

5.1. Damping for free oscillations

1. First neglect damping. Express the rate of change of magnetization dm/dft,
based on the unit vectors of the spherical coordinates. Deduce 6(t) and
©(t), starting from the state of magnetization (6, p) = (0., 0). We will write
Wo = |Yo|Ho. Describe the motion and the meaning of w,

2. We now consider damping pertubatively, based on the previous result for
dm/dt. Show that df/dt = —aw, sin

3. Solve the above equation starting from the initial condition 6(t,) = 6,.

4. We first consider small angle precession: 6, < 1. Simplify the previous
equations in that case, and express 6(t) and df/dt. What is the typical time
scale and number of turns towards the final equilibrium state?

5. We now consider large angle precession. Express df/dt for 6 = /2.
Comment, with respect to the previous result. Provide an estimate of the
time needed to approach the equilibrium state starting from 6, with an
arbitrary value.

5.2. Damping in ferromagnetic resonance

We now consider small-angle resonance (¢ < 1), sustained by an external
excitation. The excitation is considered to be a field of constant magnitude h,
rotating in the (x, y) plane at the angular frequency w. It is easier to seek solutions
with the complex notation for vector components in the (x,y) plane, while the
component along u, is still described by a real number. Thus, any vector B may
be described by the set (5, B,). As a shortcut we will write: B = (5,B,). Thus,
the excitation field will be written: h = (H,n, 0) with n = n, exp(iwt) and n < 1.
In the limit of small angle precession, the reduced magnetization will be written:
m = (u, 1), with |pu| <1

1. Show that (0,1) x (3,1) = (iB8,0), and: (3,0) x (v,0) = (0, Im(i37%)) with 7 the

complex conjugate of v. We may write Jm(i375) = (57 — By)/z.

2. To get used to the complex notation, express dm/dt with no damping and

no excitation. Show that this results in du/dt = —iv,Hop, and make the link
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with the result of free precession described in the previous part. Consider
now non-zero damping, and express dy/dt again. Integrate this differential
equation and again make the link with the result of the previous part.

Consider now both damping and excitation h. We will neglect all second-

order terms, i.e. those in au, an and nu. Apply Eq.(IV.18) and show that this
yields: du/dt = (i — a)wopt — iwon.

. Solve the above equation seeking a solution with the form: u = o exp(iwt).

Express the magnitude and the phase of the response, and make graphs.
Calculate the full width at half maximum Aw of the amplitude signal.

Draw and discuss the various torques at play in Eq.(IV.18) at resonance: w =
wo.
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Symbols

A

E;

&z

Exchange stiffness

Magnetic induction

Volume  density of
magnetocristalline
anisotropy

Volume density of Zee-
man energy

Zeeman energy

Landé factor

Magnetic field

Dipolar field, or demag-
netizing field

Electric current

Volume density of elec-
tric current
Interatomic
energy
Dipolar constant
Uniaxial anisotropy con-
stant

exchange

Defines the micromagnetic volume density of
exchange energy Ex = A(Vm)?, measured in
J/m

Tesla is the unit for B, and divB = o0 is one of
Maxwell's equations.

Measured with J/m3.

Integrated over an entire system, and mea-
sured with J.

g = 1 for magnetic moments of purely orbital
origin, and g ~ 2 for magnetic moments of
purely spin origin.

Measured in A/m. uoH is the induction sensed
by local magnetic moments giving rise to mag-
netization.

Dipolar field is the general name for magnetic
field arising from a distribution of magneti-
zation in space. Demagnetizing field is the
name when this field is considered inside the
magnetic body itself.

Measured with A.

Measured with A/m>.

Example: €., = —JS, - S..
Kq = Jp10MzZ, measured in J/m3,

For the case of magnetic anisotropy: E, =
K, sin® @, measured in J/m3.

165



166

APPENDICES

General definition such as in Maxwell's equa-
tions, making no hypothesis in the origin of
magnetization, spontaneous or induced (sus-
ceptibility).

In the case of uniform magnetization, M =
M.V with V the volume of the system
Magnetization when it arises from magnetic
ordering

May be written N; for the coefficient along a
main direction /; or more generally the tensor
coefficient Nj such that (Hg) = —N-M.

Q = Kmnc/Ky for the micromagnetic quantity.
Also used with a different meaning in the con-
text of atomic force microscopy.

v =ge/2m

A, = \/A/K with A the exchange stiffness and
K the anisotropy constant. Also sometimes
called: Bloch wall parameter

Aq = \JA/Kg = \/2A/ 11:M? with A the exchange
and M; the spontaneous magnetization. Also
sometimes called: exchange length.

fo = 4T X 1077H/m
Hq = —grad ¢q

Used in various context: atomic force mi-
croscopy; ferromagnetic resonance.

M, M Magnetization (vector
and magnitude)

m Local unit vector parallel
to magnetization.

M The total moment of
magnetic system

M, Ms Spontaneous
magnetization

N Demagnetizing
coefficient

£ An angular momentum

Q Quality factor

0 Gyromagnetic ratio

Iw Energy of a domain wall,
per unit area

A, Anisotropy  exchange
length

Ag Dipolar exchange length

u, 1 A pinpoint magnetic
dipole

Lo Magnetic permeability
in vacuum

od Scalar potential for the
dipolar field Hq

Wo Resonance frequency

Acronyms

AFM Atomic Force Microscopy

EMF Electromotive force

LL

Landau-Lifshitz (for the equation describing the time evolution of

magnetization)
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LLG Landau-Lifshitz-Gilbert (for the equation describing the time evolu-
tion of magnetization)

MAE Magnetic Anisotropy Energy

MFM Magnetic Force Microscopy

PMA Perpendicular Magnetic Anisotropy

SEMPA  Scanning Electron Microscopy with Polarization Analysis

SPLEEM Spin-Polarized Low-Energy Electron Microscopy

SQUID  Superconducting Quantum Interference Device

XM Transmission X-ray Microscopy

UHV Ultra-High Vacuum

VSM Vibrating Sample Magnetometer

Glossary

creep

erg

Extrinsic
Intrinsic

Macrospin

Micromagnetism

Propagation in the creep regime: the domain wall remains
most of the time at rest, and moves forward only in the form
of discrete jumps, which are thermally activated .

Unit for energy in the cgs-Gauss system. Is equivalent to
1077).

In the context of magnetization processes, an effect related
to inhomogeneities, also called defects, such as grains or
grain boundaries, multi-phased materials, roughness etc.
In the context of magnetization processes, an effect related
to the material parameters (anisotropy, magnetization, ex-
change) and the sample shape only.

The model where uniform magnetization is assumed in a
system, whose description may thus be restricted to the
knowledge of one or two degrees of freedom, the angular
directions of a hypothetical spin. When formerly written
as a variable, the macrospin may be dimensionless, or
have units of A.m? for a volume, A.m for magnetization
integrated over a surface (e.g. that of a nanowire), or A for
magnetization integrated along a thickness (e.g. that of a
thin film).

All aspects related the arrangement of magnetization in do-
mains and domain walls, when the latter are resolved (i.e.,
not treated as a plane with zero thickness nor energy). The
term applies to theory, simulation and experiments. Except
some rare cases that may be considered as fine points, mi-
cromagnetism is based on the description of magnetization
by a continuous function of constant and homogeneous
magnitude equal to the spontaneous magnetization Ms.



168 APPENDICES

Nanomagnetism Broadly speaking, all aspects of magnetism at small length
scale, typically below one micrometer. This concerns
ground-state (intrinsic) properties such as magnetic or-
dering and magnetic anisotropy, as well as magnetization
configurations and magnetization reversal at these small
scales. Notice that some persons restrict the meaning of
Nanomagnetism to the former.
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