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Introduction

Content

This manuscript is based on several lectures about Nanomagnetism. Parts

have been given at the European School on Magnetism, IEEE Magnetics Society

Summer School, the École Doctorale de Physique de Grenoble, the Master-2

Nanoscience and Nanotechnology in Grenoble, and in Master-2 lectures at the

Cadi Ayyad University in Marrakech.

Nanomagnetism may be defined as the branch of magnetism dealing with

low-dimension systems and/or systems with small dimensions. Such systems

may display behaviors different from those in the bulk, pertaining to magnetic

ordering, magnetic domains, magnetization reversal etc. These notes are mainly

devoted to these aspects, with an emphasis on magnetic domains and magneti-

zation reversal.

Spintronics, i.e. the physics linking magnetism and electrical transport such
as magnetoresistance, is only partly and phenomenologically mentioned here.

We will consider those cases where spin-polarized currents influence magnetism,

however not when magnetism influences the electronic transport.

This manuscript is only an introduction to Nanomagnetism, and also sticking

to a classical and phenomenological descriptions of magnetism. It targets begin-

ners in the field, who need to use basics of Nanomagnetism in their research.

Thus the explanations aim at remaining understandable by a large scope of

physicists, while staying close to the state-of-the art for the most advanced or

recent topics.

Every chapter is followed by a series of questions and problems. There is

first a series of self-testing questions. These are of use to test your understanding
of the basic concepts of the chapter. No calculation nor analysis is needed.

Second is a series of Short questions. These generally require a bit of thinking
and possibly calculation. There both test your understanding of the chapter,

and possibly extend the concepts described in the chapter. Finally, a series of

problems is proposed. A problem tackles a focused topic, being an application of

the concepts covered by the chapter. is consists of a structured list of questions,

whose coverage may require typically one hour of work. Many of them were part

of Master exams.
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NOTATIONS 7

Finally, these notes are never intended to be in a final form, and are thus

by nature imperfect. The reader should not hesitate to report errors or

make suggestions about topics to improve or extend further. A consequence

is that it is probably unwise to print this document. Its use as an electronic file is

anyhow preferable to benefit from the included links within the file. At present

only chapters I and II are more or less completed.

It is my pleasure to acknowledge comments on the manuscript from Alberto

GUIMARÃES. Several students also contributed to track mistakes and suggest im-

provements, especially Michal STAŇO, Alexis WARTELLE, Ilja RAUSCH, Rafael MESTRE

CASTILLO, David WANDER. Valuable information and feedback was also provided

by Hélène BÉA, Ursula EBELS, Daria GUSAKOVA, Jean-Christophe TOUSSAINT, Jan

VOGEL.

I welcome all future comments to contribute to the improvement of these

notes.

Notations

As a general rule, the following typographic rules will be applied to variables:

Characters

• A microscopic extensive or intensive quantity appears as slanted uppercase

or Greek letter, such as H for themagnitude of magnetic field, E for a density
of energy expressed in J/m3

, ρ for a density.

• An extensive quantity integrated over an entire system appears as hand-

written uppercase. A density of energy E integrated over space will thus be
written E, and expressed in J.

• A microscopic quantity expressed in a dimensionless system appears as a

handwritten lowercase, such as e for an energy or h for a magnetic field nor-
malized to a reference value. Greek letters will be used for dimensionless

versions of integrated quantities, such as ε for a total energy.

• Lengths and angles will appear as lower case roman or Greek letters, such

as x for a length or α for an angle. If needed, a specific notation is introduced
for dimensionless lengths.

• A vector appears as bold upright, with no arrow. Vectors may be lowercase,

uppercase, handwritten or Greek, consistent with the above rules. We will

thus write H for a magnetic field, h its dimensionless counterpart,M or µ a

magnetic moment.

• The unit vector linked with coordinate i will be written: î. For example, the
set of unit vectors in cartesian coordinates is (x̂, ŷ, ẑ). The set of unit vectors
in spherical coordinates is (̂r, θ̂, ϕ̂). A unit vector tangent to a curve will be

http://www.cbpf.br/~apguima/
http://www.cbpf.br/~apguima/


8 INTRODUCTION

written t̂. A unit vector normal to a curve or a surface will be written n̂.

Mathematics

• The dot product of two vectors A and B is written A · B.

• The cross product of two vectors A and B is written A× B.
• The curl of a vector field∇× A is written curl A.
• Einstein notation (implicit summation): niui is a shortcut for∑i niui
• i is the imaginary number such that exp (iπ) = −1
• The elementary integration volume and surface elements are written dV

and dS, respectively.

• ∂ means a boundary. For example, while V is a volume, ∂V is the surface

bounding V.

• A dotted quantity is shortcut for its time derivative:
.
m = dm/dt.

• Functions

– cosh x = ([exp(x) + exp(−x)]/2 the hyperbolic cosine
– sinh x = ([exp(x)− exp(−x)]/2 the hyperbolic sine
– tanh x = sinh x/ cosh x the hyperbolic tangent
– coth x = cosh x/ sinh x the hyperbolic cotangent
– L(x) = coth x − 1/x is the Langevin function
– B1/2 = tanh is the Brillouin 1/2 function

Units

• The International system of units (SI) will be used for numerical values.

Notations should conform to the recommendations of the Bureau Interna-

tional des Poids et Mesures (BIPM).

• B will be called magnetic induction, H magnetic field, and M magnetization.
We will often use the name magnetic field in place of B when no confusion
exists, i.e. in the absence of magnetization (in vacuum). This is a shortcut
for B/µ0, to be expressed in Teslas.

Special formatting

Special formatting is used to draw the attention of the reader to certains aspects,

as illustrated below.

Words highlighted like this are of special importance, either in the local

context, or when they are important concepts introduced for the first time.

http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/


SPECIAL FORMATTING 9

The hand sign will be associated with hand-wavy arguments and take-

away messages.

The slippery sign will be associated with misleading aspects and fine

points.



Chapter I

Setting the ground for

nanomagnetism

Overview

A thorough introduction to Magnetism[1–3] and Micromagnetism and Nanomagnet-

ism[4–7] may be sought in dedicated books. This chapter only serves as an introduc-

tion to the lecture, and it is not comprehensive. We only provide general reminders

about magnetism, micromagnetism, and of some characterization techniques useful

for magnetic films and nanostructures.

10



I.1. MAGNETIC FIELDS AND MAGNETIC MATERIALS 11

1 Magnetic fields and magnetic materials

1.1 Magnetic fields

Electromagnetism is described by the four Maxwell equations. Let us consider

the simple case of stationary equations. Magnetic induction B then obeys two

equations:

curl B = µ0 j (I.1)

divB = 0 (I.2)

j being a volume density of electrical current. j appears as a source of induction

loops, similar to electrostatics where the density of electric charge ρ is the source

of radial electric field E. Let us first consider the simplest case for an electric

current, that of an infinite linear wire with total current I. We shall use cylindrical
coordinates. Any plane comprising the wire is a symmetry element for the

current and thus an antisymmetric element for the resulting induction (see above

equations), which thus is purely orthoradial and described by the component Bθ
only. In addition the system is invariant by rotation around and translation along

the wire, so that Bθ depends neither on θ nor z, however solely on the distance r to
the wire. Applying Stokes theorem to an orthoradial loop with radius r (Figure I.1)
readily leads to:

Bθ(r) = µ0I
2πr (I.3)

This is the so-called Œrsted induction or Œrsted field, named after its discovery

in 1820 by Hans-Christian ŒRSTED. This discovery was the first evidence of the

connection of electricity and magnetism, and is therefore a foundation for the

development of electromagnetism. Notice the variation with 1/r. Let us consider
an order of magnitude for daily life figures. For I = 1 A and r = 10

−2
m we find

B = 2× 10
−5
T. This magnitude is comparable to the earth magnetic field, around

50µT. It is weak compared to fields arising from permanentmagnets or dedicated

electromagnets and superconducting magnets.

We may argue that there exists no infinite line of current. The Biot and Savart

law describes instead the elementary contribution to induction δB at point P,

I

r uθ

B=B(r)uθ θ

Figure I.1 – So-called Œrsted magnetic induction B, arising from an infinite and

linear wire with an electrical current I.
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Table I.1 – Long-distance decay of induction arising from various types of

current distributions

Case Decay

Infinite line of current 1/r
Elementary segment 1/r2

Current loop (magnetic dipole) 1/r3

arising from an elementary part of wire δ` at point Q with a current I:
δB(P) = µ0I δ`×QP

4πQP3 (I.4)

Notice this time the variation as 1/r2. This can be understood qualitatively

as a macroscopic (infinite) line is the addition (mathematically, the integral) of

elementary segments, and we have
∫
1/r2dr = 1/r+Cte. It may also be argued that

there exists no elementary segments of current for conducting wirings, however

only closed circuits (loops), with a uniform current I along its length. When viewed
as a distance far compared to its dimensions, the Biot and Savart law for a small

loop of current can be expanded in Taylor series, which to first order reads

B(r) =
µ0
4πr3

[
3
(µ · r)r

r2 − µ
]
. (I.5)

where µ is a pinpoint magnetic dipole, which is an example of a magnetic

moment. For a planar loop µ = IS where S is the surface vector normal to
the plane of the loop, oriented accordingly with the electrical current. Here it

appears clearly that the SI unit for a magnetic moment is A ·m
2
. Also, note now

the variation with 1/r3. This may be understood as the first derivative of the
variation like 1/r2 arising from an elementary segment, due to nearby regions run
by opposite vectorial currents j (e.g. the opposite parts of a loop).
Table I.1 summarizes the three cases described above.

1.2 Magnetic materials

A magnetic material is a body which displays a magnetization M(r), i.e. a volume
density of magnetic moments. The SI unit for magnetization therefore appears

naturally as A ·m
2/m3

, thus A/mI.1
. In any material some magnetization may be

induced under the application of an external magnetic field H. We define the

magnetic susceptibility χ with M = χH. This polarization phenomenon is named

diamagnetism for χ < 0 and paramagnetism for χ > 0.

I.1
We shall always use strictly the names magnetic moment and magnetization. Experimentally

some techniques provide direct or indirect access to magnetic moments (e.g. an extraction
magnetometer, a SQUID, magnetic force microscopy), other provide a more natural access to

magnetization, often through data analysis (e.g. magnetic dichroism of X-rays, electronic or

nuclear resonance).



I.1. MAGNETIC FIELDS AND MAGNETIC MATERIALS 13

Table I.2 – Main features of a few important magnetic materials: order-

ing (Curie) temperature TC, spontaneous magnetization Ms, a magnetocristalline
anisotropy constant K at 300K (The symmetry of the materials, and hence the
order of the anisotropy constants provided, is not discussed here). The last

column provides the diameter below which a spherical particle of that material

is superparamagnetic at room temperature for an observation time of 1 s, a state

that will be defined in chap.III, p.104.

Material TC (K) Ms (kA/m) µ0Ms (T) K (kJ/m3
) D300 K (nm)

Fe 1043 1730 2.174 48 16

Co 1394 1420 1.784 530 7.2

Ni 631 490 0.616 -4.5 35

Fe20Ni80 (Permalloy) 850 835 1.050 ≈ 0 –

Fe65Co35 (Permendur) 1210 1950 2.45 20 24.7

Fe304 858 480 0.603 -13 25

BaFe12O19 723 382 0.480 250 9.2

Nd2Fe14B 585 1280 1.608 4900 3.4

SmCo5 995 907 1.140 17000 2.3

Sm2Co17 1190 995 1.250 3300 3.9

FePt L10 750 1140 1.433 6600 3.1

CoPt L10 840 796 1.000 4900 3.4

Co3Pt 1100 1100 1.382 2000 4.6

Diamagnetism arises from a Lenz-like law at the microscopic level (electronic

orbitals), and is present in all materials. χdia is constant with temperature and its

value is material-dependent, however roughly of the order of 10
−5
. Peak values

are found for Bi (χ = −1.66 × 10
−4
) and graphite along the c axis (χ ≈ −4 ×

10
−4
). Such peculiarities may be explained by the low effective mass of the charge

carriers involved.

Paramagnetism arises from partially-filled orbitals, either forming bands or

localized. The former case is called Pauli paramagnetism. χ is then temperature-

independent and rather weak, again of the order of 10
−5
. The later case is called

Curie paramagnetism, and χ scales with 1/T . A useful order of magnitude in Curie
paramagnetism to keep in mind is that a moment of 1µB gets polarized at 1K

under an induction of 1 T.

Only certain materials give rise to paramagnetism, in particular metals or

insulators with localized moments. Then diamagnetism and paramagnetism add

up, which may result in an overall paramagnetic of diamagnetic response.

Finally, in certain materials microscopic magnetic moments are coupled

through a so-called exchange interaction, leading to the phenomenon of mag-

netic ordering at finite temperature and zero field. For a first approach magnetic

ordering may be described in mean field theory modeling a molecular field, as we

will detail for low dimension systems in Chapter II. The main types of magnetic

ordering are:

• Ferromagnetism, characterized by a positive exchange interaction, end
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Figure I.2 – Amperian description of a ferro (or ferri-)magnetic material: mi-

croscopic currents cancel each other between neighboring regions, except at the

perimeter of the body.

favoring the parallel alignment of microscopic moments. This results in

the occurrence of a spontaneous magnetization MsI.2. In common cases Ms
is of the order of 10

6
A/m, which is very large compared to magnetization

arising from paramagnetism or diamagnetism. The ordering occurs only at

and below a temperature called the Curie temperature, written TC. The only
three pure elements ferromagnetic at room temperature are the 3d metals

Fe, Ni and Co (Table I.2).

• Antiferromagnetism results from a negative exchange energy, favoring the

antiparallel alignment of neighboring moments
I.3
leading to a zero net

magnetization Ms at the macroscopic scale. The ordering temperature is
in that case called the Néel temperature, and is written TN.

• Ferrimagnetism arises in the case of negative exchange coupling between

moments of different magnitude, because located each on a different sub-

lattice
I.4
, leading to a non-zero netmagnetization. The ordering temperature

is again called Curie temperature.

Let us consider the simple case of a body with uniform magnetization, for

example a spontaneous magnetization Ms = Msẑ (Figure I.2). It is readily seen
that the equivalent current loopsmodeling themicroscopic moments cancel each

other for neighboring loops: only currents at the perimeter remain. The body

may thus be modeled as a volume whose surface carries an areal density of

electrical current, whose magnitude projected along ẑ is Ms. This highlights a
practical interpretation of the magnitude of magnetization expressed in A/m.

Let us stress a fundamental quantitative difference with Œrsted fields. We

consider again a metallic wire carrying a current of 1 A. For a cross-section of

I.2
The s inMs is confusing between themeanings of spontaneous and saturation. We will discuss

this fine point in the next paragraph.
I.3
More complexe arrangements, non-colinear like spiraling, exist like in the case of Cr.

I.4
Similarly to antiferromagnetism, more complex arrangements may be found.
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1mm
2
a single wiring has 1000 turns/m. The equivalent magnetization would be

10
3
A/m, which is three orders of magnitude smaller than Ms of usual ferromag-

netic materials. Thus a significant induction may easily be obtained from the

stray field of a permanent magnet, of the order of µ0Ms ≈ 1 T. It is possible to

reach magnitude of induction of several Teslas with wirings, however with special

designs: large and thick water-cooled coils to increase the current density and

total value, or use superconducting wires however requiring their use at low

temperature, or use pulsed currents with high values, this time requiring small

dimensions to minimize self-inductance.

Let us finally recall the relationship between induction, magnetic field and

magnetization:

B = µ0(H +M) (I.6)

This relationship may be derived starting from Maxwell’s equations, considering

as two different ensembles the free electric charges, and the so-called bound

electric charges plus spinmagneticmoments, contributing tomagnetizationM[3].

B is the induction vector field described in Maxwell’s equations. From the above

µ0H appears as the induction (or H in terms of magnetic field), excluding the

local contribution of magnetization. Thus, H is the relevant quantity whenever is

considered the effect of the environment on magnetization in materials as will

be discussed in the following: Zeeman energy or internal energy, mechanical

torque etc. On the reverse, B is the relevant quantity to describe the effect of

an independent system like the Lorentz force F = qv× B acting on a free charge.

1.3 Magnetic materials under field – The hysteresis loop

Let us consider a system mechanically fixed in space, subjected to an applied

magnetic field H. This field gives rise to a Zeeman energy, written EZ = −µ0Ms ·H
for a volume density, or EZ = −µ0µ ·H for the energy of a magnetic moment. The
consequence is that magnetization will tend to align itself along H, which shall be

attained for a sufficient magnitude of H. This process is called a magnetization

process, or magnetization reversal. The quantity considered or measured may be

amoment or magnetization, the former in magnetometers and the latter in some

magnetic microscopes or in the Extraordinary Hall Effect, for example. It is often

displayed, in models or as the result of measurements, as a hysteresis loop, also

called magnetization loop or magnetization curve. The horizontal axis is often

H or µ0H, while the y axis is the projection of the considered quantity along the
direction of H [e.g.: (M ·H)/H].
Hysteresis loops are the most straightforward and widespread characteri-

zation of magnetic materials. We will thus discuss it in some details, thereby

introducing important concepts for magnetic materials and their applications.

We restrict the discussion to quasistatic hysteresis loops, i.e. nearly at local
equilibrium. Dynamic and temperature effects require a specific discussion and

microscopic modeling, which will be discussed in chapter sec.III, p.104.
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(a) (b)

Figure I.3 – (a) Typical hysteresis loop illustrating the definition of coercivity Hc,
saturation Ms and remanent Mr magnetization. A minor (recoil) loop as well
as a first magnetization loop are shown in thinner lines (b) The losses during a

hysteresis loop equal the area of the loop.

Figure I.3 shows a typical hysteresis loop. We will speak of magnetization for

the sake of simplicity. However the concepts discussed more generally apply to

any other quantity involved in a hysteresis loop.

• Symmetry – Hysteresis loops are centro-symmetric, reflecting the time-

reversal symmetry of Maxwell’s equations (H→ −H and M→ −M)
Time-reversal symmetry and shifted hysteresis loops. We will

see in chapter III that hysteresis loops of certain heterostructured

systems may be non-centro-symmetric, due to shifts along both

the field and magnetization axes. This however does not contra-

dict the principle of time-reversal symmetry, as such hysteresis

loops are minor loops. Application of a sufficiently high field (let

aside the practical availability of such a high field) would yield a

centro-symmetric loop.

• ’Saturation’ magnetization – Due to Zeeman energy the magnetization

tends to align along the applied field when the magnitude of the latter is

large, associated with a saturation of the M(H) curve. For this reason one
often names saturation magnetization the resulting value of magnetization.

We may normalize the loop with its value towards saturation, and get a

function spanning in [−1; 1].
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Spontaneous and saturation magnetization. Two remarks

shall be made. First the ’s’ subscript brings some confusion

between spontaneous and saturation magnetization. Both have

a precise meaning in the mean-field model for magnetic order-

ing: the saturation magnetization is the maximummagnetization

available from microscopic (local) moments, if not averaged out

by thermal effects. The spontaneous magnetization is the macro-

scopic magnetization under zero applied field, resulting from the

competition of exchange energy and thermal disorder. Saturation

magnetization may also be used with an experimental meaning,

that of the value of magnetization reached towards high applied

magnetic field in a hysteresis loop. The knowledge of the volume

of the system (if a moment is measured) or a model (in case an

experiment probes indirectly magnetization) is needed to link an

experimental quantity with magnetization. Intrinsic or extrinsic

contributions to the absence of true saturation of hysteresis loops

are also an issue.

• Remanent magnetization – starting from the application of an external

magnetic field, we call remanent magnetization (namely, which remains)

and write Mr or mr when normalized, the value of magnetization remaining
when the field is back to zero. After applying a positive (resp. negative) field,

mr is usually found positive (resp. negative)I.5.
• Coercive field – We call coercive field (namely, which opposes an action,

here that of an applied magnetic field) and write Hc, the magnitude of field
for which the loop crosses the x axis, i.e. when the average magnetization
projected along the direction of the field vanishes.

• Hysteresis and metastability –We have mentioned that the sign of rema-

nence depends on that of themagnetic field applied previously. This feature

is named hysteresis: the M(H) path followed for rising field is different
from the descending path. Hysteresis results from the physical notion of

metastability: for a given magnitude (and direction) of magnetic field, there

may exist several equilibrium states of the system. These states are often

only local minima of energy, and then said to be metastable. Coercivity

and remanence are two signatures of hysteresis. The number of degrees

of freedom increases with the size of a system, and so may do the number

of metastable states in the energy landscape. The field history describes

the sequence of magnetic fields (magnitude, sign and/or direction) applied

before an observation. This history is crucial to determine in which stable

or metastable state the system is left
I.6
. This highlights the important

role played by spatially-revolved techniques (both for microscopies and in

reciprocal space) to deeply characterize the magnetic state of a system.

I.5
See short question 3 in chap.III (see p.131) for a case of negative remanence

I.6
The reverse is not true: it is not always possible to design a path in magnetic field liable to

prepare the system in an arbitrary metastable state.
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Metastability implies features displayed during first-order transitions such

as relaxation (over time) based on domain-wall movement, nucleation and

the importance of extrinsic features in these such as defects. This implies

that the modeling and engineering of the microstructure of materials is a

key to control properties such as coercivity and remanence.

• Energy losses – We often read the name magnetic energy, for a quantity

including the Zeeman energy. This is improper from a thermodynamic point

of view. The Zeeman quantity −µ0M ·H is the counterpart of +PV for fluids
thermodynamics: H is the vectorial intensive counterpart of pressure, and

M is the vectorial extensive
I.7
counterpart of volume, i.e. a response of the

system to the external stimulus. Thus, we should use the name density of

magnetic enthalpy for the quantity Eint − µ0M ·H, where Eint is the density
of internal magnetic energy of the system

I.8
, with analogy to H = U + PV .

A readily-seen consequence is that the quantity +µ0H · dM, analogous to

−PdV , is the density of work provided by the (external) operator and trans-
ferred to the system upon an infinitesimal magnetization process. Rotating

the magnetization loop by 90
◦
to consider M as the x axis, we see that the

area encompassed by the hysteresis loop measures the amount of work

provided to the system upon the loop, often in the form of heat (Figure I.3b).

• Functionalities of magnetic materials – The quantities defined above

allow us to consider various types of magnetic materials, and their use for

applications. Metastability and remanence are key properties for memory

applications such as hard disk drives (HDDs), as its sign keeps track of the

previously applied field, defining so-called up and down states. Coercivity

is crucial for permanent magnets, which must remain magnetized in a well-

defined direction of the body with a large remanence, giving rise to forces

and torques of crucial use inmotors and actuators. In practice coercivities of

one or two Teslas may be reached in the best permanent-magnet materials

such as SmCo5, Sm2Co17 and Nd2Fe14B. The minimization of losses in the

operation of permanent magnets and magnetic memories is important,

both to minimize heating and for energy efficiency. Among applications

requiring small losses are transformers and magnetic shielding. To achieve

this one seeks both low coercivity and low remanence, which defines so-

called soft magnetic materials. These materials are also of use in magnetic

field sensors based on their magnetic susceptibility, providing linearity (low

hysteresis) and sensitivity (large susceptibility dM/dH). A coercivity well
below 10

3
A/m (or 1.25mT in terms of µ0H) is obtained in the best soft

magnetic materials, typically based on Permalloy (Fe20Ni80). On the reverse,

some applications are based on losses such as induction stoves. There the

magnitude of coercivity is a compromise between achieving large losses

and the ability of the stove to produce large enough ac magnetic fields to

I.7
or more precisely, the magnetic moment of the entire system

t

V

MsdV.

I.8
see part 3 for the description of contributions to Eint.
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reverse magnetization. Finally, in almost all applications the magnitude of

magnetization determines the strength of the sought effect, such as force

or energy of a permanent magnet, readability for sensors and memories,

energy for transformers and induction heating.

• Partial loops – In order to gain more information about the magnetic

material than with a simple hysteresis loop, one may measure a first

magnetization loop (performed on a virgin or demagnetized sample) or a

minor loop (also called partial loop or recoil loop), see Figure I.3a.

Intrinsic versus extrinsic properties. One calls intrinsic those proper-

ties of a material depending only on its composition and structure, and

extrinsic those properties related to microscopic phenomena related to

e.g. microstructure (crystallographic grains and grain boundaries), sam-
ple shape etc. For example, spontaneous magnetization is an intrinsic

quantity, while remanence and coercivity are extrinsic quantities.

1.4 Domains and domain walls

Hysteresis loop, described in the previous section, concerns a scalar and inte-

grated quantity. It may thus hide details of magnetization (a vector quantity) at

the microscopic level. Hysteresis loops must be seen as one out of many sig-

natures of magnetization reversal, not a full characterization. Various processes

may determine the features of hysteresis loops described above. It is a major

task of micromagnetism andmagnetic microscopies to unravel these microscopic

processes, with a view to improve or design new materials.

For instance remanence smaller than one may result from the rotation of

magnetization or from the formation ofmagnetic domains etc. Magnetic domains

are large regions where in each the magnetization is largely uniform, while this

direction may vary from one domain to another. The existence of magnetic

domains was postulated by Pierre WEISS in his mean field theory of magnetism in

1907, to explain why materials known to be magnetic may display no net moment

at the macroscopic scale. The first direct proof of the existence of magnetic do-

mains came only in 1931. This is due to the Bitter technique, where nanoparticles

are attracted by the loci of domain walls[6]. In 1932 Bloch proposes an analytical

description of the variation of magnetization between two domains. This area of

transition is called a magnetic domain wall. The basis for the energetic study of

magnetic domains was proposed in 1935 by Landau and Lifshitz.

Let us discuss what may drive the occurrence of magnetic domains, whereas

domain walls imply a cost in exchange and other energies, see sec.5. There exists

two reasons for this occurrence, which in practice often take place simultane-

ously. The first reason is energetics, where the cost of creating domain walls

is balanced by the decrease of dipolar energy which would be that of a body
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remaining uniformly magnetized. This will be largely developed in chap.II. The

second reason is magnetic history, which we have already mentioned when dis-

cussing hysteresis loops (see sec.1.3). For instance upon a partial demagnetization

process up to the coercive field, domain walls may have been created, whose

propagation will be frozen upon removal of the magnetic field.

Summary

Magnetic fields andmagnetic materials. Following Maxwell’s equations, magnetic

induction B arises from moving charges. At each location in space B arises from two

contributions: local spin and orbiting charges in matter, called magnetizationM; the

remainder called magnetic field H, arising from distant spin and moving charges (ei-

ther distant magnetization, or current in a circuit, e.g. in a coil). Magnetization is also
the volume density of magnetic moments in a magnetic material. The hysteresis

loop M(H) is the most common characterization of a magnetic material, underlying
many processes implying magnetic domains

2 Units in Magnetism

The use of various systems of units is a source of annoyance and errors in

magnetism. A good reference about units is that by F. Cardarelli[8]. Conver-

sion tables for magnetic units may also be found in many reference books in

magnetism, such as those of S. Blundell[1] and J. M. D. Coey[3]. An overview of

the Système International and conventions for writing units may be downloaded

from the Bureau International des Poids et Mesures (BIPM)[9]. We shall here

shortly consider three aspects:

• The units – A system of units consists in choosing a reference set of ele-

mentary physical quantities, allowing one tomeasure each physical quantity

with a figure relative to the reference unit. All physical quantities may then

be expressed as a combination of elementary quantities; the dimension

of a quantity describes this combination. For a long time many different

units were used, depending on location and their field of use. Besides

the multiples were not the same in all systems. The wish to standardize

physical units arose during the French revolution, and the Academy of

Sciences was in charge of it. In 1791 the meter was the first unit defined,

at the time as the ten millionth of the distance between the equator and

a pole. Strictly speaking four types of dimensions are enough to describe

all physical variables. A common choice is: length L, mass M, time T,

and electrical current I. This lead to the emergence of the MKSA set of

units, standing for Meter, Kilogram, Second, Ampère for the four above-

mentioned quantities. The Conférences Générale des Poids et Mesures

(General Conference on Weighs and Measures), an international organi-

zation, decided of the creation of the Système International d’Unités (SI).

http://www.bipm.org/en/publications/si-brochure/
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In SI, other quantities have been progressively appended, which may in

principle be defined based on MKSA, however whose independent naming

is useful. The three extra SI units are thermodynamic temperature T (in

Kelvin, K), luminous intensity (in candela, cd) and amount of matter (in mole,

mol). The first two are linked with energy, while the latter is dimensionless.

Finally, plane angle (in radian, rad) and solid angles (in steradian, sr) are

called supplementary units. Another system than MKSA, of predominant

use in the past, is the cgs system, standing for Centimeter, Gram, and

Second. At first sight this system has no explicit units for electrical current

or charge, which is a weakness with respect to MKSA, e.g. when it comes
to check the dimension homogeneity of formulas. Several sub-systems

were introduced to consider electric charges or magnetic moments, such as

the esu (electrostatic units), emu (electromagnetic units), or the tentatively

unifying Gauss system. In practice, when converting units between MKSA

and cgs inmagnetism one needs to consider the cgs-Gauss unit for electrical

current, the Biot (Bi), equivalent to 10A. Other names in use for the Biot are

the abampere or the emu ampere. Based on the decomposition of any

physical quantity in elementary dimensions, it is straightforward to convert

quantities from one to another system. For magnetic induction B 1 T is

the same as 10
4
G (Gauss), for magnetic moment µ 1 A ·m

2
is equivalent to

10
3
emu and for magnetization M 1 A/m is equivalent to 10

−3
emu/cm3

. In

cgs-Gauss the unit for energy is erg, equivalent to 10
−7
J. The issue of units

would remain trivial, if restricted to converting numerical values. The real

pain is that different definitions exist to relate H,M and B, as detailed below.
• Defining magnetic field H – In SI induction is most often defined with

B = µ0(H + M), whereas in cgs-Gauss it is defined with B = H + 4πM.
The dimension of µ0 comes out to be L ·M · T

−2
· I
−2
, thus µ0 = 4π ×

10
−7
m· kg · s

−2
· A
−2
in SI. Using the simple numerical conversion of units

one finds: µ0 =4π cm · g · s
−2
· Bi
−2
. Similar to the absence of explicit unit

for electrical current, it is often argued that µ0 does not exist in cgs. The

conversion of units reveals that one may consider it in the definition of

M, with a numerical value 4π. However the definition of H differs, as the
same quantity is written µ0H in SI, and (µ0/4π)H in cgs-Gauss. Thus, the
conversion of magnetic field H gives rise to an extra 4π coefficient, besides
powers of ten. This pitfall explains the need to use an extra unit, the œrsted,

to express values for magnetic field H in cgs-Gauss. Then 1Oe in cgs-Gauss
is equivalent to (10

3/4π) A/mI.9
in SI. A painful consequence of the different

definitions of H is that susceptibility χ = dM/dH differs by 4π between both
systems, although is is a dimensionless quantity: χcgs = (1/4π)χSI. The

same is true for demagnetizing coefficients if defined by Hd = −NM, withNcgs = 4πNSI.
I.9
In practice, the absence of µ0 in the cgs system often results in the use of either œrsted or

Gauss to evaluate magnetic field and induction.
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• Defining magnetization M – we often find the writing J = µ0M in the
literature. More problematic is the (rather rare) definition to use Ms instead
of µ0Ms. It is for instance the case of the book of Stöhr and Siegmann[10],
otherwise a very comprehensive book. These authors use the SI units,

however define: B = µ0H+M. This can be viewed as a compromise between

cgs and SI, however has an impact on all formulas making use of M.

Summary

M, H, B and the system of units. This section highlights that, beyond the mere

conversion of numerical values, formulas depend on the definition used to link

magnetization, magnetic field and induction. It is crucial to carefully check the system

of units and definition used by authors before copy-pasting any formulas implying

M, H or B.

3 The various types of magnetic energy

3.1 Introduction

There exists several sources of energy in magnetic systems, which we review in

this section. For the sake of simplicity of vocabulary we restrict the following

discussion to ferromagnetic materials, although all aspects may be extended

to other types of orders. These energies will be described in the context of

micromagnetism.

Micromagnetism is the name given to the investigation of the competition

between these various energies, giving rise to characteristic magnetic length

scales, and being the source of complexity of distributions of magnetization,

which will be dealt with in chap.II. Its principles were first outlined in 1940 by

William Fuller Brown, Jr[11].

Micromagnetism, be it numerical or analytical, is in most cases based on two

assumptions:

• The variation of the direction of magnetic moment from (atomic) site to

site is sufficiently gradual so that the discrete nature of matter may be

ignored. Magnetization M and all other quantities are described in the
approximation of continuous medium: they are continuous functions of the

space variable r.

• The normMs of the magnetization vector is constant and uniform in any ho-
mogeneous material. This norm may be that at zero or finite temperature.

The latter case may be viewed as a mean-field approach.

Based on these two approximations for magnetization we often consider the unit

vectorm(r) to describe magnetization distributions, such thatMs(r) = Msm(r).
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3.2 Zeeman energy

The Zeeman energy pertains to the energy of magnetic moments in an external

magnetic field. Its density is:

EZ = −µ0M ·H (I.7)

EZ tends to favor the alignement of magnetization along the applied field. As
outlined above, this term should not be considered as a contribution to the

internal energy of a system, however as giving rise to a magnetic enthalpy.

3.3 Magnetic anisotropy energy

The theory of magnetic ordering predicts the spontaneous occurrence of a mag-

netizationM, however with no restriction on its direction in space. In a real system

the internal energy depends on the direction ofM with the underlying crystalline

direction of the solid. This arises from the combined effect of crystal-field effects

(coupling electron orbitals with the lattice) and spin-orbit effects (coupling orbital

with spin moments).

This internal energy is called magnetocrystalline anisotropy energy, whose

density will be written Emc in these notes. One also often find the acronym MAE
in the literature, for Magnetic Anisotropy Energy. The consequence of Emc is the
tendency for magnetization to align itself along certain axes (or in certain planes)

of a solid, called easy directions. On the reverse, directions with a maximum

of energy are called hard axes (or planes). Magnetic anisotropy is at the origin of

coercivity, although the quantitative link between the two notions is complex, and

will be introduced in chap.II.

Themost general casemay be described by a function Emc = Kf (θ,ϕ), where f is
a dimensionless function. In principle any set of angular functions complying with

the symmetry of the crystal lattice considered may be used as a basis to express

f and thus Emc. Whereas the orbital functions Yl,m of use in atomic physics may be
suitable, in practice one uses simple trigonometric functions. Odd terms do not

arise inmagnetocrystalline anisotropy because of time-reversal symmetry. Group

theory can be used to highlight the terms arising depending on the symmetry of

the lattice.

For a cubic material one finds:

Emc,cub = K1cs + K2cp + K3cp2 + . . . (I.8)

with s = α2
1
α2
2
+ α2

2
α2
3
+ α2

3
α2
1
and p = α2

1
α2
2
α2
3
, αi being the cosines of the

magnetization direction with the three axes. For hexagonal symmetry

Emc,hex = K1 sin2 θ + K2 sin4 θ + . . . (I.9)

where θ is the (polar) angle between M and the c axis. Here we dropped the
azimuthal dependence because it is of sixth order, and that in practice the
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magnitude of anisotropy constants decreases sharply with its order. Thus for

an hexagonal material the magnetocrystalline anisotropy is essentially uniaxial.

Group theory predicts the form of these formulas, however not the numerical

values, which are material dependent. For example for Fe K1c = 48 kJ/m3
so that

the < 001 > directions (resp. < 111 >) are easy (resp. hard) axes of magnetization,

while for Ni K1c = −5 kJ/m3
so that < 001 > (resp. < 111 >) are hard (resp. easy)

axes of magnetization. In Co K1 = 410 kJ/m3
and the c axis of the hexagon is the

sole easy axis of magnetization.

In many cases one often considers solely a second-order uniaxial energy:

Emc = Ku sin2 θ (I.10)

It is indeed the leading term around the easy axis direction in all above-mentioned

cases. We will see in sec.4 that it is also a form arising in the case of magnetostatic

energy. It is therefore of particular relevance. Notice that it is the most simple

trigonometric function compatible with time-reversal symmetry and giving rise to

two energy minima, this liable to give rise to hysteresis. It is therefore sufficient

for grasping the main physics yet with simple formulas in modeling. The strength

of anisotropy may be expressed in terms of energy through Ku, or in field units
through the so-called anisotropy field Ha = 2Ku/µ0Ms. The meaning and useful-
ness of this field value will be detailed in chap.III for quasistatic magnetization

reversal, and in chap.IV for precessional motion.

Hard versus soft magnetic materials. Materials with low magnetic

anisotropy energy are called soft magnetic materials, while materials

with large magnetic anisotropy energy are called hard magnetic materi-

als. The historical ground for these names dates back to the beginning

of the twentieth century where steel was the main source of magnetic

material. Mechanically softer materials were noticed to have a coercivity

lower than that of mechanically harder materials.

Sources of magnetic anisotropy. One should also consider magne-

toelastic anisotropy energy, written Emel. This is the magnetic energy
associated with strain (deformation) of a material, either compressive,

extensive or shear. Emel may be viewed as the derivative of Emc with
respect to strain. In micromagnetism the anisotropy energy is described

phenomenologically, ignoring all microscopic details. Thus we may

consider the sum of Emc and Emel, written for instance Ea or EK , a
standing for anisotropy and K for an anisotropy constant.

3.4 Exchange energy
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i i+1
a

θ

Figure I.4 – Exchange energy. Ex-

pansion of exchange with θ to link
discrete exchange to continuous the-

ory.

Exchange energy between neighboring

sites may be written as:

E12 = −JS1 · S2 (I.11)

J is positive for ferromagnetism, and tends
to favor uniform magnetization. Let us out-

line the link with continous theory used in micromagnetism. We consider the

textbook case of a (one-dimensional ) chain of XY classical spins, i.e. whose
direction of magnetization may be described by a single angle θi (Figure I.4). The
hypothesis of gradual variation of θi from site to site legitimates the expansion:

E12 = −JS2 cos(δθ)
= −JS2

[
1− (δθ)

2

2

]
= Cte +

JS2a2
2

(
dθ

dx
)2

(I.12)

This equation may be generalized to a three dimensional system and moments

allowed to point in any direction in space. Upon normalization with a3 to express a
density of energy, and forgetting about numerical factors related to the symmetry

and number of nearest neighbors, one reaches:

Eex = A (∇m)2 . (I.13)

m(r) is the unit vector field describing the magnetization distribution. The writing

(∇m)2 is a shortcut for
∑
i
∑
j(∂mi/∂xj)2, linked to Eq.(I.12). A is called the exchange

stiffness, such as A ≈ (JS2/2a). It is then clear that the unit for A is J/m, which we
find also in Eq.(I.13). The order of magnitude of A for commonmagnetic materials
such as Fe, Co and Ni is 10

−11
J/m.

3.5 Magnetostatic energy

Magnetostatic energy, also called dipolar energy and written Ed, is the mutual
Zeeman-type energy arising between all moments of a magnetic body through

their stray field (itself called magnetostatic field or dipolar field and written Hd).
When considering as a system an infinitesimal moment δµ = MδV the Zeeman
energy provides the definition for enthalpy. However when considering the entire

magnetic body as both the source of all magnetic field (dipolar field Hd) and that

of moments, this term contributes to the internal energy. The volume density of

dipolar energy may be written:

Ed = − 1
2
µ0M.Hd. (I.14)
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The 1/2 prefactor results from the fact that the Zeeman interaction between two

elementary moments is a mutual energy, which shall not be counted twice upon

integration over the entire system (see also sec.4). Also, as dipolar fields arise

in a linear fashion from magnetization, dipolar energy scales with the so-called

dipolar constant Kd = 1

2
µ0M2

s
.

Dipolar energy is the most difficult contribution to handle in micromagnetism.

Indeed, due to its non-local character it may be expressed analytically in only

a very restricted number of simple situations. Its numerical evaluation is also

very costly in computation time as all moments interact with all other moments;

this contributes much to the practical limits of numerical simulation. Finally, due

to the non-uniformity in direction and magnitude of the magnetic field created

by a magnetic dipole, magnetostatic energy is a major source of the occurrence

of non-uniform magnetization configurations in bulk as well as nanostructured

materials, especially magnetic domains. For all these reasons we dwell a bit on

this term in the following section.

3.6 Characteristic quantities

In the previous paragraphs we introduced the various sources of magnetic

energy, and discussed the resulting tendencies on magnetization configurations

one by one. When several energies are involved, balances must be found and

the physics is more complex. This is the realm of micromagnetism, the investi-

gation of the arrangement of the magnetization vector field and magnetization

dynamics. It is a major branch of nanomagnetism, and will be largely covered in

chap.II.

It is a general situation in physics that when two or more effects compete,

characteristic quantities emerge such as energy or length scales, and also dimen-

sionless number. Here these will be built upon combination of three quantities

with different units: exchange stiffness A, magnetization Ms and applied fieldH, and an anisotropy constant K such as Ku. Characteristic length scales are of
special importance in nanomagnetism, determining the size below which specific

phenomena occur. Here we only make two preliminary remarks; more will be

discovered and discussed in the next chapter, ending with an overview.

Let us assume that in a problem only magnetic exchange and anisotropy

compete. A and Ku are expressed respectively in J/m and J/m3
. The only way

to combine these quantities to express a length scale, which we expect to arise

in the problem, is Δu = √A/Ku. We will call Δu the anisotropy exchange length[12]
or Bloch parameter as often found in the literature. This is a direct measure of

the width of a domain wall where magnetization rotates (limited by exchange)

between two domains whose direction is set by Ku.
In a problem where exchange and dipolar energy compete, the two quantities

at play are A and Kd = (1/2)µ0M2

s
. In that case we may expect the occurrence of

the length scale Δd = √A/Kd = √2A/µ0M2
s
, which we will call dipolar exchange
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length[6] or exchange length as more often found in the literature.

In usual magnetic materials Δu ranges from roughly one nanometer in the case
of hard magnetic materials (high anisotropy), to several hundreds of nanometers

in the case of soft magnetic materials (low anisotropy). Δd is of the order of 10 nm.

Summary

The various types of magnetic energy. Magnetization in a magnetic material

is described by the theory called micromagnetism, where magnetization M is a

continuous variable in space, with constant modulus. When at equilibrium, the

distribution ofM in a piece of material reflects the balance between several energies:

exchange which tends to maintain magnetization uniform; magnetic anisotropy

energy which tends to direct magnetization along certain crystallographic directions

or in certain planes; Zeeman and dipolar energy which tend to align magnetization

along the local magnetic field, be it of external nature or arise from distant moments

in the material. Characteristic length scales emerge from the competition between

different energies, against which the size of a system can be checked to determine

the magnetization distribution likely to occur.

4 Handling dipolar interactions

4.1 Simple views on dipolar interactions

To grasp the general consequences of Hd let us first consider the interaction
between two pinpoint magnetic dipoles µ1 and µ2, split by vector r. Their mutual

energy reads (see sec.I.5):

Ed = −
µ0
4πr3

[
3
(µ1 · r)(µ2 · r)r2 − µ1 ·µ2

]
(I.15)

We assume bothmoments to have a given direction z, however with no constraint

on their sign, either positive or negative. Let us determine their preferred

respective orientation, either parallel or antiparallel depending on their locii,

that of µ2 being determined by vector r and the polar angle θ with respect toz (Figure I.5). Equation I.15 then reads:
E12 =

µ0µ1µ2
4πr3 (1− 3 cos

2 θ) (I.16)

z

rθ

Figure I.5 – Simple view on

dipolar energy. Interaction

between two Ising spins ori-

ented along z. Parallel (resp.
antiparallel) alignment is fa-

vored inside (resp. outside) a

cone of half-angle 54.74
◦
.

The ground state configuration being the one

minimizing the energy, we see that parallel align-

ment is favored if cos
2 θ > 1/3, that is within a

cone of half-angle θ = 54.74
◦
, while antiparallel

alignment is favored for intermediate angles (Fig-

ure I.5).
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Thus, under the effect of dipolar interactions

twomoments roughly placed along their easy axis

tend to align parallel, while they tend to align an-

tiparallel when placed next to each other. These

rules rely on angles and not the length scale, and

are thus identical at the macroscopic and micro-

scopic scales. The example is that of permanent

magnets, which are correctly approached by Ising

spins.

The occurrence of a large part of space where antiparallel alignement is

favored (outside the cone) makes us feel why bulk samples may be split in large

blocks with different (e.g. antiparallel) directions of magnetization. These are
magnetic domains. Beyond these hand-waving arguments, the quantitative con-

sideration of dipolar energy is outlined below in the framework of a continuous

medium.

4.2 Various ways to handle magnetostatics

The total magnetostatic energy of a system with magnetization distribution M(r)

reads :

Ed = −
µ0
2

y

V

M.Hd dV. (I.17)

V is the volume of the magnetic system considered. The pre-factor 1

2
results from

the need not to count twice the mutual energy of each set of two elementary

dipoles taken together. The decomposition of a macroscopic body in elementary

magnetic moments and performing a three-dimensional integral is not a practical

solution to evaluate Ed. It is often better to proceed similarly to electrostatics,

with div E = ρ/ε0 being replaced by divHd = −divM (derived from the definition
of B, and Maxwell’s equation divB = 0). Within this analogy, ρ = −divM are

called magnetic volume charges. A little algebra shows that the singularity of

divM that may arise at the border of magnetized bodies (Ms going abruptly from
a finite value to zero on either side of the surface of the body) can be lifted by

introducing the concept of surface charges σ = M.n̂. n̂ is the normal vector to
the surface of the magnetic body, oriented towards the outside. This analogy

is relevant because Hd has a zero curl and thus derives from a potential Hd =

−gradφd, with:

φd(r) =
y

V

ρ(u)

4π|r− u|
dVu +

{

∂V

σ(u)

4π|r− u|
dSu (I.18)

Concerning the field, one then has:

Hd(r) =

y

V

ρ(u) (r− u)
4π|r− u|3

dVu +
{

∂V

σ(u) (r− u)
4π|r− u|3

dSu (I.19)



I.4. HANDLING DIPOLAR INTERACTIONS 29

x

z

y

x

y

z

a b

c
d

+ + + + + + + + + + +

- - - - - - - - - - -

+ + + + + + + + + + +

- - - - - - - - - - -

+ + +

- - -
+
+
+
+
+

+
+
+
+
+

Figure I.6 – Magnetic charges. Magnetization and magnetic charges in simple

cases: (a) An infinite thin film with in-plane magnetization (cross-sectional view)

(b) An infinite thin film with out-of-plane magnetization (cross-sectional view)

(c) A cylinder of infinite length with uniform axial magnetization (d) A strip with

infinite length and a head-to-head domain wall.

In Eq.(I.18), the integral of the first term on the right hand side is

performed over the volume of the system, except at its very boundary

where the singularity was considered above and is taken into account

as surface charges. So, in principle the volume of integration should be

written V

dS. However, for the simplicity of notations, we write it V.

Simple distributions of magnetization and the associated magnetic charges are

displayed on Figure I.6. Equation I.17may then beworked out, integrating in parts:

Ed =
1

2
µ0

y

Space

M.gradφd dV (I.20)

=
1

2
µ0

y

Space

Mi(∂φd/∂xi) dV (I.21)

=

[
1

2
µ0φdMi]∞

−∞
− 1

2
µ0

y

Space

(∂Mi/∂xi)φd dV (I.22)

(I.23)

The first term cancels for a finite size system considered in the infinite space, and

one finds a very practical formulation:

Ed =
1

2
µ0

(
y

V

ρφd dV +
{

∂V

σφd dS

)
. (I.24)
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Another equivalent formulation may be demonstrated:

Ed =
1

2
µ0

y

Space

H2
d
dV (I.25)

where integration if performed over the entire space. From the latter we infer

that Ed is always positive or zero. Equation I.24 shows that if dipolar energy

alone is considered, its effect is to promote configurations of magnetization free

of volume and surface magnetic charges. Such configurations are thus ground

states (possibly degenerate) in the case where dipolar energy alone is involved.

• The tendency to cancel surface magnetic charges implies a very

general rule for soft magnetic materials: their magnetization

tends to remain parallel to the edges and surfaces of the system.

• The name dipolar field is a synonym for magnetostatic field. It

refers to all magnetic fields created by a distribution of magnetiza-

tion or magnetic moments in space. The name stray field refers to

that part of dipolar field, occurring outside the body responsible

for this field. The name demagnetizing field refers to that part

of dipolar field, occurring inside the body source of this field; the

explanation for this name will be given later on.

The term dipolar brings some confusion between two notions. The

first notion is dipolar (field or energy) in the general sense of magne-

tostatic. The name dipolar stems from the fact that to compute total

magnetostatic quantities of a magnetic body, whatever its complexity,

one way is to decompose it into elementary magnetic dipoles and per-

form an integration; the resulting calculated quantities are then exact.

The second notion is magnetic fields or energies arising from idealized

pinpoint magnetic dipoles, and obeying Eq.(I.15). When using the name

dipolar to refer to the interactions between two bodies, one may think

either that we compute the exact magnetostatic energy based on the

integration of elementary dipoles, or that we replace the two finite-size

bodies with pinpoint dipoles for the sake of simplicity, yielding on the

reverse an approach evaluation. In that latter case one may add extra

terms, called multipolar, to improve the accuracy of the approximation.

To avoid confusion one should stress explicitly the approximation

in the latter case, for instance mentioning the use of a point dipole

approximation.

4.3 Demagnetizing factors

Demagnetizing factors (or coefficients) are a simple concept providing figures for

the magnetostatic field inside a body, and the associated magnetostatic energy.
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When Eq.(I.19) is applied to uniform magnetization, only the surface contribution

remains:

Hd(r) = Ms{
∂V

(r− u)
4π|r− u|3

mini(u) dSu (I.26)

with M ≡ Msm, m = miui and n = nîi, with Einstein’s summation notation. n̂ is
the local normal to the surface, oriented towards the outside of the body. Upon

integration over the entire volume, one gets the average value of the dipolar field

inside the system:

〈Hd〉 = −MsN ·m
= −Ms miNij î (I.27)

In these formula, N is a 3× 3 matrix with coefficients:

Nij = − 1

V

y

V

dVr

{

∂V

ni(u) · (r− u)|j
4π|r− u|3

dSu (I.28)

in which (r− u)|j is the jth component of (r − u). N is called the demagnetizing
matrix. It may be shown that N is symmetric and positive, and thus can be

diagonalized. The set of xyz axes upon diagonalization are called the main
or major axes. The new coefficients Nii of the diagonal matrix are called the
demagnetizing coefficients and will be written Ni hereafter as a shortcut. Along
these axes one now has:

〈Hd,i〉 = −NiM. (I.29)

This highlights a simple interpretation of demagnetizing coefficients. First, they

are called demagnetizing as they are positive, so that on the average the internal

magnetostatic field is indeed opposite to magnetization. Second, each coefficient

is a direct measure of the strength of the demagnetizing field along the consid-

ered direction.

The same concepts can be applied to dipolar energy. As magnetization is

assumed to be uniform, from Eq.(I.17) it is straightforward that the density of

demagnetizing energy is directly connected to the average demagnetizing field

through Ed = −(µ0/2) 〈Hd〉 ·M, so that in the end:
Ed = Kd tm ·N ·m

= mimj Nij Kd (I.30)

with Kd = 1

2
µ0M2

s
. Again, when one considers themain axes of the system (in which

N is diagonal), this boils down to:

Ed = m2i NiKd (I.31)
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Table I.3 – Demagnetizing factors. Cases of practical use

Case Demagnetizing factor Note

Slab Nx = 1 Normal along x
Sphere Nx = 1/3 Along any direction

Cylinder, disk cross-section Nx = 1/2 Along transverse directions

General ellipsoid Nx = 1

2
abc ∫∞

0

[
(a2 + η)√(a2 + η)(b2 + η)(c2 + η)]−1

dη

Prolate revolution ellipsoid Nx = α2

1−α2

[
1√

1−α2
arg sinh

(√
1−α2

α

)
− 1

]
α = c/a < 1

Oblate revolution ellipsoid Nx = α2

α2−1

[
1− 1√

α2−1
arcsin

(√
α2−1

α

)]
α = c/a > 1

Cylinder with elliptical section Nx = 0, Ny = c/(b + c) and Nz = b/(b + c) Axis along x
Prism Analytical however long formula See: [6] or [15]

Based on this, a common use of demagnetization coefficients is to estimate the

difference of energy along different directions. Let us consider the simple case of

magnetization confined in the xy plane. m2x + m2y = 1, so that the above equation
becomes, dropping a constant term,

Ed = (Ni − Nj)Kd cos2 θ (I.32)

with cos θ = mx. In this example, dipolar energy takes the form of a second-

order uniaxial anisotropy. More generally, from Eq.(I.30) it is clear that N yields a

quadratic form for the energy even in the most general case, so that only second-

order anisotropies can arise from dipolar energy, at least for perfectly uniform

samples
I.10
.

The handwaving consideration of the distribution of surface charges shows

that the dipolar energy should be lower when magnetization is aligned parallel

to a long dimension of the system. This translates into lower values of the

demagnetizing coefficients along such directions. Besides, it can be shown that

Tr(N) = 1, so that Nx + Ny + Nz = 1. For example, for an infinitely-long cylinder

with axis along ẑ, Nz = 0 because there are no magnetic charges for M directed

along ẑ; Nx = Ny = 1/2 because x and y transverse directions are equivalent, and
the sum of al three coefficients is 1. Similarly, all Ni ’s equal 1/3 for a sphere. For
a thin film (also called slab), Nx = Ny = 0 and Nz = 1. Analytical formulas or ex-

pansions for Ni ’s may be found for other shapes, such as revolution ellipsoids[13],
prisms[14, 15] (Figure I.7), cylinders of revolution of finite length[16, 17], infinite

cylinders with a triangular cross-section[18], tetrahedrons[19, 20], torii[21]. Some

formulas are gathered in Table I.3. For other geometries micromagnetic codes or

Fourier-space computations[20] may be used.

I.10
see sec.4.4 for effects due to non-uniformities.
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Figure I.7 – Demagnetizing factors. Numerical evaluation for prisms. (a) is the

full plot, while (b) is en enlargement for flat prisms.

Demagnetizing factors for an arbitrary shape?. While all the above

is true for bodies with an arbitrary shape, not even necessarily con-

nected, a special subset of bodies is worth considering: that of shapes

embodied by a polynomial surface of degree at most two. To these

belong slabs, ellipsoids and cylinders with an ellipsoidal cross-section.

In that very special case it may be shown within the non-trivial theory

of integration in space[22] that Eq.(I.29) is then true locally: in the case

of uniform magnetization, Hd is uniform and equal to −NiM when M is
aligned parallel to one of themajor directions. Thismay allow the torque

on magnetization to be uniformly equal to zero, and thus ensures

the self-consistency of the assumption of uniform magnetization. This

makes the application of demagnetizing factors of somewhat higher

reliability than for bodies with an arbitrary shape. Notice, however,

that self-consistency does not necessarily imply that the uniform state

is stable and a ground state.

Caution needed for the applicability of demagnetizing factors. De-

magnetizing factors are derived based on the assumption of uniform

magnetization. While this assumption allows demagnetizing factors

to be defined and calculated analytically or numerically, care should

be taken when applying these to practical cases, where magnetization

configurations may not be uniform.

Summary

The various types of magnetic energy. Magnetostatic or equivalently-called

dipolar interactions, are complex to evaluate as they are long ranged, and involve

all couples of any two infinitesimal moments in a system. While dipolar energy can

be expressed conceptually in several equivalent integral forms, only in some very
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special cases can these be integrated analytically. This is the case of the concept

of demagnetizing factors, describing the situation of uniform magnetization, and

predicting the value of the internal demagnetizing field in a tensor form. Due to

this rather restrictive hypothesis, care need to be taken when applying these.

5 The Bloch domain wall

The existence of magnetic domains was suggested by Pierre WEISS in his mean

field theory of Magnetism in 1907. Magnetic domains were postulated to ex-

plain why large bodies made of a ferromagnetic materials could display no

net magnetic moment under zero external magnetic field. Their existence was

confirmed only in 1931 with a Bitter technique, based on magnetic nanoparticles

decorating the locii of domain walls because these particles are attracted by the

local gradient of magnetic field[6]. This example highlights the importance of

magnetic microscopy in the progress of micromagnetism. In 1932 Bloch provides

an analytical solution in a simple case to describe the region of transition between

two magnetic domains, which is named a magnetic domain wall. At this stage we

do not discuss the origin of magnetic domains, however focus on the model of a

domain wall.

The Bloch model is one-dimensional, i.e. considers a chain of spins. The idea
is to describe the transition between two three-dimensional domains (volumes)

in the form of a two-dimensional object with translational invariance in the plane

of the domain wall. It is assumed that magnetization remains in the plane of

the domain wall, a configuration associated with zero volume charges −divM
and thus associated zero dipolar energy. The only energies at play are then the

exchange energy, and the magnetic anisotropy energy which is assumed to be

uniaxial and of second order: EK (x) = Ku sin2 θ. Under these assumptions the
density of magnetic energy reads:

E(x) = Ku sin2 θ + A (dθ/dx)2 (I.33)

where x is the position along the chain of spins. The case thus consists in
exhibiting the magnetic configuration which minimizes the total energy

E =

∫
+∞

−∞
[EK (x) + Eex(x)]dx. (I.34)

while fulfilling boundary conditions compatible for a 180
◦
domain wall: θ(−∞) = 0

and θ(+∞) = π.
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Wall energy per unit surface. The unit for the wall energy in Eq.(I.34) is

clearly an energy per unit area, expressed in J/m2
. This makes sense as a

domain wall is a two-dimensional object. To calculate the total energy of

a wall in a real system, for instance across a wire, one needs to integrate

Eq.(I.34) over the domain wall area, to get an energy in joules.

5.1 Simple variational model

This paragraph proposes an approximate solution for a domain wall, however

appealing for its simplicity and ability to highlight the physics at play, and a

reasonable numerical result. We consider the following model for a domain

wall of width `: θ = 0 for x < −`/2, θ = π(x/` + 1/2) for x ∈ [−`/2; `/2] and
θ = π for x > `/2. In a variational approach we search for the value `var which

minimizes Eq.(I.34), after integration: E = Ku`/2 + Aπ2/`. The minimization yields
`var = π

√
2
√A/Ku and Evar = π√2√AKu is the associated energy.

How to ’read’ the domain wall width. Letting aside the factor π
√
2 a

simple variational model highlights the relevance of the Bloch param-

eter Δu defined previously. How may we read this formula? Exchange
only would tend to enlarge the domain wall, hence its occurrence at the

numerator. To the reverse, the anisotropy energy gives rise to a cost of

energy in the core of the domain wall. This tends to decrease its width,

explaining its occurrence at the denominator.

5.2 Exact model

The exact profile of a Bloch domain wall may be derived using the principle of

functional minimization to find the function θminimizing E. It may be shown that

the principle of minimization is equivalent to the so-called Euler equation:

∂E
∂θ
=
d

dx
[
∂E
∂(dθ
dx )

]
(I.35)

Considering a magnetic system described by Eq.(I.34) one finds:

dEK
dθ

=
d

dx
(
2Adθ
dx
)

(I.36)

= 2Ad2θ
dx2 (I.37)
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Upon multiplying both parts by dθ/dx and integration, this reads:
EK (x)− EK (a) = A

[
dθ(x)
dx

]2
− A

[
dθ(a)
dx

]2
= Eex(x)− Eex(a) (I.38)

a is the origin of integration, here chosen as the center of the domain wall.
Considering two semi-infinite domains with equal local density of energy, E is
stationary (minimum) in both domains, and by convention may be chosen zero

with no loss of generality. Equation I.38 applied to ±∞ shows that EK (a) = Eex(a),
and finally:

∀x EK (x) = Eex(x) (I.39)

We hereby reach a general and very important feature of a domain wall sepa-

rating two semi-infinite domains under zero applied field: the local density of

anisotropy and exchange energy are equally parted at any location of the system.

The equal parting of energy considerably eases the integration to get the areal

density of the domain wall
I.11
:

E = 2

∫
+∞

−∞
A (dθ/dx)2 dx

= 2

∫
+∞

−∞
EK (x) dx

= 2

∫
+∞

−∞

√AEK (x) (dθ/dx) dx
= 2

∫ θ(+∞)

θ(−∞)

√AEK (θ) dθ (I.40)

The energy of the domain wall may thus be expressed from the angular depen-

dence of the energy alone, without requiring solving the profile of the domain

wall, which may be interesting to avoid calculations or when the latter cannot be

solved.

Let us come back to the textbook case of the functional I.33. After some

algebra one finds for the exact solution:

θex(x) = 2 arctan
[
exp(x/Δu)] (I.41)

Eex = 4

√AKu. (I.42)

Δu = √A/Ku is of course confirmed to be a natural measure for the width W of
a domain wall. The exact solution along with that of the variational model are

displayed on Figure I.8. Despite its crudeness, the latter is rather good, for both

the wall profile and its energy: the true factor afore
√AKu equals 4 against π√2 ≈

4.44 in the variational model. It is trivial to notice that Evar > Eex, as the energy

of a test function may only be larger than the energy of the minimum functional.

I.11
We set arbitrarily dθ/dx > 0 without loss of generality, using the symmetry x → −x.
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It shall be noticed that the equal parting of energy is retained in the variational

model, however only in its global form, not locally.

5.3 Defining the width of a domain wall

Several definitions for the widthW of a domain wall have been proposed (see e.g.
Ref.[6], p.219). One may classify all possible definitions in mainly two categories.

The first type of definitions are based on the intercept of the asymptotes of the

domains, with some related to the domain wall. It was introduced and discussed

in detail by Lilley, to be applied to any kind functional of anisotropy, beyond

the simple case of uniaxial with second order[23]. Lilley considered the domain

wall described by the function of angle θ(x). In the case of uniaxial anisotropy
of second order this yields WL = π

√A/Ku = πΔu for the exact solution, andWL,lin = `variational = √2πΔu for the linear variational model. A variation in this type of
definition consists in using the asymptotes of the curve cos θ(x), instead of that of
θ(x). One then findsWm = 2√A/Ku, both in the exact and variational models[6]. In
the notation here m stands for the component of magnetization in the domains.
Definitions using asymptotes are more robust against the detailed shape of the

anisotropy function or experimental noise, than definitions based on a threshold,

named Wt[24].
Beware of notations. The wall width is sometimes written δ, instead

of W . Also, some call Δu the domain wall width. To avoid any confusion
it is advised to keep the name Bloch parameter for the latter quantity,

or the anisotropy exchange length (sec.3.6).

A second type of definitions are based on the integral of a function, instead of

its asymptote(s). This was introduced by Jakubovics[24], with the argument that

it would be less sensitive to the detailed shape of the anisotropy function, com-

pared to WL and Wm. In the case of the analysis of experimental data, an integral
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Figure I.8 – Domain wall profile. Exact solution for the profile of the Bloch

domain wall (green dots), along with its asymptote (green line). The lowest-energy

solution of the linear variational model is displayed as a black line.



38 CHAPTER I. SETTING THE GROUND FOR NANOMAGNETISM

function is also less sensitive to noise than an asymptote defined at one point.

Following Jakubovics’paper
I.12
one may define the quantity: WJ = ∫ +∞−∞ sin2 θ(x)dx,

where J stands for Jakubovics. A variation of this definition is WF = ∫ +∞−∞ sin θ(x)dx.
In the latter definition F stands for the flux of magnetization m = sin θ. In the

present case of a uniaxial anisotropy of second order one finds WF = WL andWJ = Wm. Yet another integral definition is the one proposed by Thiele: WT =
2/
∫
+∞
−∞ |

dm
dx |2dx[25]. It has been argued to be of special relevance for precessional

domain wall motion (see chap.IV), or domain-wall magnetoresistance[26].

Independent from the choice of asymptote versus integral computation, def-

initions based on a component of magnetization (sin θ) may be more suited for

the analysis of domain walls investigated by magnetic microscopies probing the

projection of magnetization in a given direction.

Domain walls other than π angle. The use of cos and sin functions

in the definitions Wm and WF is dependent on the starting and ending
angles of the domain wall, here 0 and π. For other choices or domain

walls with angle differing from 180
◦
, these definitions shall be modified.

Summary

The Bloch domain wall. The properties of domain walls can be calculated exactly

in simple cases, for example when only magnetocrystalline energy competes with

exchange energy. This is the case of Bloch walls in which magnetization rotates in

the plane of the domain wall, creating a charge-free wall associated with no dipolar

energy. The wall width then scales like
√A/K and its energy like√AK . The prefactors

depend on the wall angle (180
◦
or different), the type of anisotropy (uniaxial of

second order, or different), as well as the exact definition of wall width.

6 Magnetometry and magnetic imaging

There exist many techniques to probe magnetic materials. Due to the small

amounts to be probed, and the need to understand magnetization configura-

tions, high sensitivity and/or microscopies are of particular interest for nanomag-

netism. There exists no such thing as a universal characterization technique, that

would be superior to all others. Each of them has its advantages and disadvan-

tages in terms of versatility, space and time resolution, chemical sensitivity etc.

The combination of several such techniques is often beneficial to gain the full

understanding of a system.

Here a quick and non-exhaustive look is proposed over some techniques that

I.12
In the original paper from Jakubovic[24] the definition of the width is twice larger than the

present one
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are useful in nanomagnetism. This is a mere descriptive overview. In-depth

reviews may be found elsewhere[6, 27–29].

6.1 Extraction and vibrating magnetometers

Magnetometers are instruments capable of measuring the moment of a sample

as a function of various parameters, such as an applied field to deliver a magne-

tization loop.

Magnetometers are based on the measurement of the stray field arising

from the total moment of a sample. Their various implementations differ by

the principle of detection of the magnetic field. Two widespread techniques

are electromotive force through pick-up coils, and Josephson junctions in the

so-called SQUID (Superconducting QUantum Interference Device). Most mag-

netometers are based on extraction and vibration schemes: the sample is set

in oscillatory motion along an axis, so that its stray field arising at the probing

element varies over time, allowing a better precision using lock-in techniques, and

the rejection of some artifacts. Themotionmay be slow to moderate for SQUID (a

fraction of, to several Hz), or at a few tens of Hz for inductive techniques (so-

called vibrating sample magnetometers, VSM). Thus, magnetometers cannot

probe high-frequency magnetization processes. Variations exist such as torque

magnetometers, of particular interest for determining magnetic anisotropy.

Magnetometers measure the integrated moment of a sample; they are not

a microscopy technique. Samples need in general to be one centimeter or

smaller in size. This ensures that they fit the cavity where the magnetic field is

produced, and also remain of moderate size against the pick-up coils so that the

point dipole approximation is valid and measurements are quantitative. Modern

magnetometers achieve a sensibility in the range 10
−8− 10−11 A ·m2

, which means

one or much smaller than one atomic layer of Fe, Co or Ni on a surface of

the order of 1 cm
2
. Nevertheless contributions arising from the sample holder,

substrates or impurities, may limit the absolute precision of the measurements.

A hysteresis loop is obtained in a couple of seconds to several tens of minutes

depending on the sensitivity and the number of points required. The external

field is produced by resistive or superconducting coils. A common environmental

condition is variable temperature (Figure I.9). Pb. 6 considers the vibrating sample

magnetometer.

Magnetometers are one of the first techniques to have been developed

in the history of magnetism, and have been largely used to characterize

materials to determine their ordering state and temperature, their

magnetization and magnetic anisotropy. Magnetometers remain very

important for material development.
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Figure I.9 – Magnetometry. (a) Artist view of a VSM-Squid magnetometer

from the company Quantum Design. (b) Hysteresis loops performed at various

temperatures of an epitaxial film Mo\Fe(2 nm)\Mo with a (110) base plane for the
epitaxy. The field was applied a few degrees from the hard axis, itself defined by a

combination of second order and fourth order contributions.

6.2 Faraday and Kerr effects

Faraday and Kerr methods measure changes of the polarization of light upon

transmission into or reflection from (respectively) a magnetic sample; these are

called magneto-optical effects. Kerr is often labeled as MOKE, for Magneto-

Optical Kerr Effect. These methods allow indirectly to gather information about

the magnetization state of a sample.

Magnetization is not probed directly, although monitoring changes of the

polarization of light versus e.g. applied field allow to determine the shape of e.g.
hysteresis loops. Magnetic order is related to unfilled electronic shells, with split

states or band splitting of the order of an electron volt. Thus light, especially in

the visible range, is sensitive to magnetism through spin-dependent transition

between these states and bands. There are two microscopic effects. The first

one is birefringence, which is the delay of propagation of light depending on its

polarization, here in relation with the magnetization direction. Birefringence oc-

curs both in insulating and conductive materials. The second effect is dichroism,

which is the difference of absorption / reflection depending on the polarization of

light and the magnetization of the material.

Faraday is usually implemented with light impinging on the sample at normal

incidence. Kerr may be implemented at normal incidence (so-called polar MOKE),

or tilted incidence. The polarization of the incident light may be linear, circular

or modulated over time for more complex measurements. Depending on the

setup one may measure the change of intensity, the ellipticity or the rotation of

the light. They may arise from birefringence and/or dichroism, again depending

on the setup. MOKE is very sensitive due to the low penetration depth of light

https://www.qdusa.com
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Figure I.10 – Magneto-optical techniques. (a) A Kerr microscope from the

evico magnetics company, equipped with an electromagnet to allow for in-field

measurements. (b) Hysteresis loops (averaged over thousands of loops) of a

thin Co film for various ramping rates of the applied field (Courtesy J. Vogel)

(c) Hysteresis loop (averaged over thousands of loops) of a single nano-object,

a magnetic nanotube of diameter 350 nm (focused Kerr setup. Courtesy M. Staňo).
(d) Static domain pattern with a ramified shape, obtained using Kerr microscopy.

Sample: Au/Co/graphene ultrathin film with perpendicular anisotropy.

in metals, so that the sensibility can be better than one atomic layer. In the

Faraday geometry thick samples may be measured, while in MOKE in on metals

the probing depth does not exceed 10 nm.

Magneto-optical effects allow the combination of various environmental con-

ditions, such as magnetic field, temperature, pressure, embedded in other mea-

surement setup such as electric probers. They are also compatible with time-

resolved measurements, either averaged or in a stroboscopic mode. Finally, all

this may be averaged over a large spot of light, or in a focus spot for nano-object

measurement, or in an optical microscope to directly deliver magnetic images.

The spatial resolution is limited to the wavelength of light, or slightly below if an

objective with large numerical aperture is used, or with lenses immersed in high-

index transparent oils (Figure I.10).

6.3 X-ray Magnetic Dichroism techniques

6.3.A X-RAY MAGNETIC CIRCULAR DICHROISM

Dichroism exploits the dependence of the absorption of X-ray photons, in relation

with the direction of moments in the material, thus allowing to measure the

latter in an indirect way[30]. X-ray dichroism is non-negligible only when the

energy of photons is tuned to equal certain electronic transitions, where the final

http://www.evico-magnetics.de/
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states are those of the partly-filled shells responsible for magnetism. Based on

the spin imbalance of free states, and selection rules for absorbtion based on

Fermi golden rule and involving the electronic orbital momentum and the photon

polarization, the probability of absorbtion depends on the polarization of the X-

ray photon. X-raymagnetism circular dichroism (XMCD) is the imbalance between

left and right circularly-polarized beams. It is only an indirect measurement of the

component of magnetization parallel to the beam direction, although analytical

selection rules or simulations allow to extract it, and besides with an indication

of both the spin and the orbital contributions. Magnetic dichroism is element

sensitive, due to the addressing of an electronic transition of a given element.

It is often implemented in the soft X-ray range, considering L transitions in 3d

materials (from p states to the d band), and M transitions for rare earth (from

p states to f states). The need to control X-ray energy requires the use of
synchrotron radiation.

The amount of absorption can be detected directly (transmission geometry),

or indirectly through fluorescence or photo-emitted electrons (total electron yield)

involved in de-excitation. In the soft X-ray range the latter two have a probing

depth limited by the mean free path of X-rays (a few tens to a hundred of

nanometers) and/or of the collected photons (a few to tens of nanometers), or

the mean free path of electrons (a few nanometers). Thus, it cannot probe bulk

samples, and is neither sensitive to only one atomic plane. It is therefore very

suitable to investigate thin films. In practice one often sets the energy of photons

at an absorption edge, proceeds to two countings with opposite helicities, and

computes the dichroic ratio (I+ − I−)/(I+ + I−).
XMCD is often implemented under vacuum because soft X-rays are strongly

absorbed in air, and also when the detection involves the collection of electrons.

It can be combined with magnetic field, variable temperature, time-resolved

measurements based on stroboscopic methods and the temporal structure of

the orbiting particles in the synchrotron ring in well-defined packets. Used with

a white beam it is a magnetometry technique. Implemented with electron optics

or a small beam it provides a microscopy approach, as detailed in the next two

paragraphs.

X-ray magnetic linear dichroism (XMCD) also exists. It results from

the directional selection of certains orbitals based on electric dipole

selection rules. When magnetism has an orbital character XMLD allows

to probe the direction of magnetization, however not the pointing

direction. It is a technique which allows to probe domains of various

orientations in certain antiferromagnetic materials.
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a b

Figure I.11 – Photo-Emission Electron Microscopy. (a) PEEM-LEEM instrument

installed at the Nanospectroscopy beamline in Elettra synchrotron, Italy. The

sample and the entire imaging column are enclosed in ultra-high vacuum cham-

bers. The beamline with the X-ray optics coming from the synchrotron start at

the right of the image, extending twenty meters. (b) Illustration of the elemental

resolution: imagingmagnetic domains at the Co and Fe edges at the same location

of a Al[3 nm]\Fe20Ni80[4 nm]\Al2O3[2.6 nm]\Co[7 nm] thin filmwith in-plane uniaxial
magnetic anisotropy[33], a stack that can be used as a magnetic tunnel junction.

Fe20Ni80 is the top layer and Co is the buried layer.

X-ray magnetic dichroism can also be implemented with hard X-

rays, for example at the K edges of 3d elements. The magnitude of

dichroism is much less than at the L edges, however it is better suited

when very thick samples must be probed, because of the larger mean

free path of photons at these energies.

6.3.B XMCD PHOTO-EMISSION ELECTRON MICROSCOPY

This technique collects the electrons photo-emitted following the dichroic ab-

sorption of X-rays, so again it is a synchrotron-based technique. An image is

built thanks to a complex electron column developed for the Low-Energy Electron

Microscope (LEEM). Electrons are accelerated into the column, and are converted

to an image on a fluorescent screen at the end of the column[31, 32]. XMCD-

PEEM has the same features as total electron yield XMCD: probing depth of a few

nanometers, elemental resolution, possible combination with time resolution.

However, it is very difficult to image under applied fields larger than a few mT,

because low-energy electrons are very sensitive to these.

As the imaging column is perpendicular to the sample surface, the incidence

of the X-ray beam is tilted for geometric reasons. Thus, what is probed is a

combination of an in-plane and the out-of-plane components of magnetization.

There now exist rotatable sample holders, which allow to separate the two in-

plane components, acquiring two successive images. The spatial resolution in

the best instruments and under optimum conditions is of the order of 25 nm.
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XMCD-PEEM is very important in nanomagnetism and spintronics, mak-

ing use of multilayered architectures, which can be probed separately if

they consist of different materials, thanks to the elemental resolution.

6.3.C XMCD TRANSMISSION X-RAY MICROSCOPY

Transmission X-ray Microscopy (TXM) is yet another technique based on

dichroism[34]. As the name suggests, this technique was introduced as a

transmission technique. The imaging capability is brought by Fresnel lenses
I.13

positioned before and after the sample. There are two implementations, each

with spatial resolution around 20 nm. In the Scanning mode (STXM) the first

Fresnel lens focuses the beam to a spot determining the resolution, while the

second Fresnel collimates the transmitted beam to collect it on a photodiode. In

the regular TXM mode the first Fresnel lens condenses the beam to define the

full field of view, while the second lens acts as an objective to make the gather in

the far field. STXM is better suited to perform local hysteresis loops because of

the high local intensity, while regular TXM is considered better suited for imaging

because it prevents artifacts arising from the scanning, such as drift-related.

(S)TXM offers more versatility for the sample environment than PEEM, be-

cause it is a photon-in photon-out technique; it is fully compatible with magnetic

field, and needs to be implemented in secondary vacuum only, not ultra-high

vacuum like LEEM. However, a constraint is the transmission geometry, requir-

ing to work on samples thinned like for transmission electron microscopy, or

deposited on thin X-ray transparent membranes such as silicon nitride. Note

that this condition is being lifted, with the emergence of instruments where the

detection scheme is fluorescence or total electron yield[35].

6.4 Scanning probe microscopies

These techniques are based on the local measurement of a property, performed

thanks to a local probe. The measurement spot is then scanned in a two-

dimensional fashion to construct an image. We consider the three such mi-

croscopies with magnetic capabilities, which have a large use and impact in

nanomagnetism (Figure I.12).

I.13
Fresnel lenses are made of successful ring-shaped strips of an X-ray absorbing material. The

strips have a width and are located at the locus of what would be the scattering pattern of a small

aperture. Following Babinet’s reciprocal theorem, a collimated beam of X-rays shone on it focuses

part of the beam in the focal plane.
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6.4.A MAGNETIC FORCE MICROSCOPY

Magnetic Force Microscopy (MFM) is a technique mapping the stray field em-

anating from a sample, whose analysis allows one to infer the distribution of

magnetization inside the sample.

MFM is derived from Atomic Force Microscopy. Along with Kerr microscopy, it

is the most popular magnetic microscopy technique owing to its combination of

moderate cost, reasonable spatial resolution (routinely 25 − 50 nm) and versatil-

ity. Many reviews are available for both AFM[36] and MFM[27, 28].

AFM and MFM probe forces between a sample and a sharp tip. The tip is

non-magnetic in the former case, and coated with a few tens of nanometers

of magnetic material in the latter case. The forces are estimated through their

impact on the displacement or oscillation of a soft cantilever holding the tip,

usually monitoring the deflection of a laser reflected at the backside of the

cantilever. The most common working scheme of MFM is an ac technique: while

the cantilever is mechanically excited close to its resonance frequency f0 (or more
conveniently written as the angular velocity ω0 = 2πf0), the phase undergoes a
shift proportional to the vertical gradient of the (vertical) force ∂F/∂z felt by the
tip: Δϕ = −(Q/k)∂F/∂z. In practice magnetic images are gathered using a so-

called two-pass technique: each line of a scan is first conducted in the tapping

mode with strong hard-sphere repulsive forces probing mostly topography (so-

called first pass), then a second pass is conducted flying at constant height (called

the lift height) above the sample based on the information gathered during the

first pass (Figure I.12). Forces such as Van der Waals are assumed to be constant

during the second pass, and the forces measured are then ascribed to long-range

forces such as magnetic.

The difficult point with MFM is the interpretation of the images, and the

possible mutual interaction between tip and sample. A basic discussion of MFM

is proposed in the Problems section, p.61. A summary of the expected signal

measured is provided in Table I.4.

Table I.4 – Simple models for MFM tips. Expected MFM signal with respect to

the vertical component Hd,z of the stray field in static (cantilever deflection) and
dynamic (frequency shift during the second pass) modes versus the model for the

MFM tip.

Tip model Static response Dynamic response

Monopole Hd,z ∂Hd,z/∂z
Dipole ∂Hd,z/∂z ∂2Hd,z/∂z2
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Figure I.12 – Magnetic Force Microscopy (MFM). (a) View of an NT-MDT

AFM/MFM instrument, with built-in in-plane 200mT magnetic field (magnetic

circuit at the top part of the picture), and home-made stage for out-of-plane 1.1 T

magnetic field (bottom of the image). (b) Optical top-view of the cantilever (dark

part, laser focused close to its end) while imaging a patterned structure. (c) Typical

resonance curve of a cantilever used for MFM. (d) Scheme for the two-pass MFM

procedure. (e) 2 × 2 µm MFM domain pattern of a 4 nm-thick epitaxial FePt(001)

film with perpendicular magnetization (sample courtesy: A. MARTY).

6.4.B SPIN-POLARIZED SCANNING TUNNELING MICROSCOPY

Spin-polarized Scanning Tunneling Microscopy (sp-STM) is a unique technique

able to resolve the magnetic state at a surface, down to single atoms and

molecules (Figure I.13).

Sp-STM is the magnetic implementation of the Scanning Tunneling Micro-

scope (STM). STM was invented by Binnig and Rohrer in 1982, who were awarded

the Nobel prize in 1986, recognizing the giant leap it enabled for the exploration

of matter at surfaces at the atomic scale. STM exploits the tunnel current flowing

between a sharp tip and the surface to investigate. It is therefore restricted to

imaging metals or semiconductors. Keys for sensitivity and spatial resolution are

the exponential variation of this current with tip-sample distance, and the small

distance itself, of the order of one nanometer.

https://www.ntmdt-si.com/
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Figure I.13 – Spin-polarized Scanning Tunneling Microscopy (sp-STM). (a) Set-

up allowing sp-STM, operating under ultra-high vacuum, at cryogenic tempera-

ture (7K) and variable field (up to 8 T), installed at the Max-Planck Institut für

Mikrostruckturphysik in Halle, Germany. The entire instrument is mounted on

damped supports in a shielded room to allow for the lowest perturbations to

achieve the highest sensitivity. (b) Close-up view of the tip and sample parts,

with typical size a couple of centimeters. (c) Example of topographic (top) and

magnetic (bottom) images of a self-assembled thin-film patch deposited on a

Cu(111) surface, made of a core of Co atomic bilayer (ferromagnetic), surrounded

by a bilayer Fe brim (with a helix spin structure)[39]. Courtesy: D. SANDER.

spSTM consists of capping an STM tip with magnetic material[37]. The tunnel

current is sensitive to the respective orientations of tip and sample, so that a tip

magnetized in a given direction allows through scanning to derive amagneticmap

of the sample surface. It took close to an extra fifteen years after the invention of

the STM, to get a working spSTM[38]. The reason is that magnetic imaging relies

on fine spectroscopic analysis, requiring very sensitive and stable instruments,

work at cryogenic temperatures to avoid spin excitations at the sample of tip

location, and the need to develop tips with well-controlled magnetization.

The experimental constraints are severe, as detailed above, and the versatility

in terms of samples is moderate, as only single-crystalline samples grown and

investigated under ultra-high vacuum are eligible. Despite this, spSTM has

allowed key discoveries in nanomagnetism, thanks to its unique ability to resolve

the magnetic state of individual atoms and molecules. Breakthrough includes

the discovery of antiferromagnetic face-centered cubic iron, and peculiar periodic

spin textures such as cycloids and skyrmions[40]. The technique has also been

extended to manipulation, e.g. injection of spin-polarized current to switch

magnetization (chap.??), or inducing a magnetic phase transition with an electric

field[41].

http://www.mpi-halle.mpg.de
http://www.mpi-halle.mpg.de
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6.4.C NV-CENTER MICROSCOPY

NV-center microscopy allows to measure quantitatively one component of the

stray field of a sample with an extreme sensitivity, down to single electron

spins[42].

The principle relies on a defect introduced on purpose in the structure of

diamond, consisting of a pair of a nitrogen atom and a vacancy. This combined

center is quantum in nature. It has a triplet state S = 1 with a splitting of the

states ms = 0 and ms = ±1, which can be measured resonantly with a gigahertz
wave. The resonance peak is narrow and well-defined by the NV center. The

measurement can be performed at room temperature thanks to the low level of

decoherence in the diamond matrix. When the NV center is subject to a magnetic

field the degeneracy of the states ms = ±1 is lifted, splitting the resonance
peak. The measurement of the splitting is a direct quantitative measure of the

component of magnetic field along a quantized direction set by the orientation

of the diamond material embedding the NV center. Scanning above a magnetic

sample thus allows to measure a map of its stray field with high accuracy and

quantitatively.

In practice, single defects in diamond nanoparticles are required, to be put

at the apex of an atomic force microscope for the combined magnetic and

topographic imaging. Although is suffers from the restriction to rather low fields

and more complexity than MFM, it has emerged as a very important technique in

recent years. It was used for example to resolve the internal structure of domain

walls in ultrathin films, discriminating Bloch walls from Néel walls (see chap.II).

It is compatible with variable temperature, and with magnetization dynamics as

long as the frequency is much lower than the monitored microwave resonance.

6.5 Electron microscopies

Electrons are particles with both a spin and a charge, which can each be exploited

for magnetic imaging. Three main techniques exist, as described below.

6.5.A LORENTZ MICROSCOPY AND HOLOGRAPHY

Lorentz microscopy, and holography, are implemented in transmission electron

microscopes. They deliver quantitative maps of in-plane induction related to

thin samples and integrated along the beam path (including magnetization and

dipolar field), with a spatial resolution down to a few nanometers. Two different

principles are exploited.

In Lorentz microscopy one uses the Lorentz force, responsible for the deflec-

tion of the electron beam. A way to recover information about induction is to

use an off-centered aperture in the image plane to select only those electrons

with a given deflection, reflecting a given in-plane component of induction; this
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Figure I.14 – Lorentz Microscopy. Schematics for the (a) Foucault mode and

(b) Fresnel mode. (c) I
2
2TEM (Hitachi) microscope installed at CEMES laboratory,

Toulouse, specially designed for in-situ and interferometry measurements of mi-

cromagnetism at the nanoscale. Images of a flux-closure Co(0001) self-assembled

dot in the Fresnel mode, (d) under-focussed, (e) in focus, (f) over-focussed[43].

highlights domains, and combining several images with different positions of the

aperture a 2D map of induction can be reconstructed. Another way does not use

an aperture, but images made in slightly over- under-focused conditions, in which

case electron beams from neighboring domains with opposite magnetization

either overlap or split; this reveals domain walls, and reconstructions algorithms

allow to reconstruct the 2D map of in-plane induction (Figure I.14).

In electron holography one uses the phase shift of the electrons, related to the

magnetic vector potential A projected and again integrated along the electron

path. As detectors are not sensitive to the phase of electrons, a special design

needs to be used: the beam having passed through the sample is recombined

with a reference beam to produce an interference pattern, from which the phase

shift through the sample can be extracted.

Both techniques have the constraint of thin sample, however they provide

several key advantages: they are quantitative; magnetic field can be applied from

zero up to several tesla; variable-temperature sample holders are available; their

spatial resolution is currently the highest among all microscopies, apart from sp-

STM. Developments are under way such as combination with GHz excitations and

pump-probe measurements for time resolution, or also vectorial tomography

(reconstruction of a 3D map of magnetization from a series of images measured

at different tilt angles of a sample)[44].

www.cemes.fr


50 CHAPTER I. SETTING THE GROUND FOR NANOMAGNETISM

a b

Figure I.15 – Scanning Electron Microscopy with Polarization Analysis, or

spin-SEM. (a) Overview of the spin-SEM setup at the IBM research laboratories

in Zürich (courtesy R. Allenspach). The Mott detector is located in a separate

room, not seen here. (b) Illustration of the magnetic domain pattern imaged by

SEMPA (right) of a thin Co film deposited on a Cu(001) crystal and displaying a

regular array of holes, in a so-called antidot fashion (left, topographic view, the

bright areas highlighting the places where Co is missing)[45]. This system has a

fourfold magneto-crystalline anisotropy, and thus may display domains aligned

along four directions. The direction of sensitivity to the magnetization direction is

indicated with the arrow in the inset. Each image is 18× 18 µm.

6.5.B SCANNING ELECTRON MICROSCOPY WITH POLARIZATION ANALYSIS (SEMPA)

SEMPA is a powerful however not so widespread technique. It is based on a

Scanning Electron Microscope (SEM) and delivers 3D vectorial maps of surface

magnetization. It is also called spin-SEM[45].

As for SEM, a focused beam of non-spin-polarized electrons is scanned at the

surface of a sample; the difference with SEM lies in the fact that the electrons

arrive at the sample with nearly zero kinetic energy, so that it is mostly the

material electrons close to the Fermi level (responsible for ferromagnetism) that

matter. Although the beam is not spin-polarized as a whole, each individual

electron has a spin. The probability of absorption and reflection of an electron

on a ferromagnetic surface depends on its spin quantized along the direction of

magnetization of the sample, as the latter has a different number of occupied and

empty states in the two channels. As a consequence the reflected beam is highly

spin-polarized. The analysis of this polarization as a function of the position of

the beam on the sample, allows to make a map of magnetization (Figure I.15).

The standard technique to analyze the polarization of electrons is a Mott

detector, based on the asymmetric scattering of electrons arriving at relativistic

energies on high spin-orbit-element surface such as tungsten, which are mea-

sured simultaneously with a several-quadrant detector. The weak point of the

technique is the low efficiency of detection, of the order of 10
−4
. This raises con-

cerns of signal-to-noise ratio, which is what in practice limits the spatial resolution

to a few tens of nanometers. The strength of the technique is that the use of

detectors differently located in space reveal several component of magnetization.

Thus, a complete vectorial map ofmagnetization can be reconstructed. The depth

probed on the magnetic sample is a few atomic layers at most.
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The technique can be combined with variable temperature. Application of

magnetic field is more complex because of the deflection of electrons, however

small coils of millimeter size implemented in the proximity of the sample have

been demonstrated to allow imaging in field up to 100mT[46]. The development

of novel detectors with increased efficiency could revive this technique[47].

6.5.C SPIN-POLARIZED LOW-ENERGY ELECTRON MICROSCOPY (SPLEEM)

The characteristics of SPLEEM are very similar to those of SEMPA, in that it

provides vectorial maps of surface magnetization.

SPLEEM is based on the LEEM microscope, described in the PEEM para-

graph (sec.6.3.b). The magnetic working principle is opposite to that of SEMPA.

Indeed, the beam of electrons sent to the sample is highly spin-polarized,

being produced by optical pumping of a GaAs cathod with circularly-polarized

light[48, 49]. Reflection at the sample surface is again spin-dependent, so that

beams with opposite spin values and identical intensity, are reflected as beams

with two very different intensities. Their difference is a direct probe of the

magnetic state of the surface. Manipulation of the spin state of the incoming

beam also provides the ability to measure vectorial maps. Note also that SPLEEM

is a full-field imaging, unlike SEM. Combined with the high spin polarization

of the incoming beam, this makes it a technique easier to use than SEMPA.

Nevertheless, only a handful of such instruments exist worldwide, especially due

to the complexity of the spin gun producing spin-polarized electrons at will.

SPLEEM has an ultimate resolution of the order of 10 nm, and probes a couple

of atomic layers. It is compatible with variable temperature, however as in PEEM

virtually no magnetic fields can be applied.

Summary

Magnetometry and magnetic imaging. Besides magnetometry, the emphasis has

been put here on magnetic microscopy, which plays a key role in nanomagnetism.

There is no universal and best technique, each having its advantages and drawbacks.

Criteria include spatial resolution, physical quantity probed, sensitivity, quantitative

or not, conditions that can be applied such as field or temperature, time resolution,

elemental sensitivity. The combination of several types of microscopies is sometimes

required to get the full picture of a situation.



Problems for Chapter I

Problem 1: Self-testing

1. What is the scaling law for the long-range stray field arising from amagnetic

dipole?

2. Provide the definition and unit for a magnetic moment, and for magnetiza-

tion. How are they linked one with the other?

3. Which are the only three elements ferromagnetic at room temperature?

4. Provide the definition for coercive field and for remanence.

5. Name the four main contributions to the magnetic energy of a system.

6. Provide the name and equation for a measure of the volume density of

magnetostatic energy in a given material.

7. What is the definition of stray field and demagnetizing field?

8. What is the definition of a demagnetizing coefficient?

9. What is a Bloch domain wall? Why is it considered as the domain wall of

lowest energy in a bulk ferromagnetic material?

10. Provide equations for the width and energy of a Bloch domain wall

Problem 2: Short questions

1. See Table I.1. Write the mutual energy as a function of distance between

two magnetic charges Q, and that between two magnetic dipoles with
magnitude µ, aligned along their separation vector. Discuss the difference

in power law.

2. Provide the expressions for the dipolar exchange length Δd, the anisotropy
exchange length Δu and the anisotropy field Ha = 2K/µ0Ms in the cgs system
(see problem on units for a detailed analysis).

3. Draw the equivalent magnetic charges and the magnetic fields resulting

from the distribution of magnetization in the four cases shown on Fig-

ure I.16.
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a b dc

e f hg

Figure I.16 – Magnetic charges, demagnetizing and stray fields (a) cross-

section of a uniformly-magnetized cube (b) side view of a perpendicularly-

magnetized thin film with infinite lateral dimensions (c) Cross-section of a cylinder

magnetized along a transverse direction (d) Top view of a thin and flat element

with very large lateral dimensions. (e-h) various sets of permanent magnets.

4. Demagnetizing coefficients. Provide the main directions for the following

geometries (make a sketch and label all three axes in each case): sphere,

cube, thin film, cylinder of infinite length, cylinder of finite length, thin flat

element with a circular shape, thin flat element with a rectangular shape,

thin flat element with a triangular shape. In each case provide figures

for all three demagnetizing coefficients, if available exactly, or inequalities

bounding them.

5. Provide the proof for the domain wall width formula given in sec.5.3: WL,Wm, WJ, WF and WT, both for the variational linear model, and the exact
profile [Eq.(I.41)].

Problem 3: Demagnetizing coefficients of composite

materials

This problem considers the estimation of the demagnetizing matrix N for

composite materials, a situation at first sight more complex than considered in

the main text, however conceptually covered by the concept thereby developed.

Let us recall this definition for a uniformly-magnetized body: < Hd >= −N ·M.
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1. Consider a body with magnetization of modulus Ms, in which there exists
an empty cavity. Let us call Nc the demagnetizing matrix of a particle

which would have the shape of the cavity. Sketch the distribution of

magnetic charges around the cavity for a given direction of magnetization,

and provide an expression for the dipolar field Hd,c inside the cavity. This

situation is known as the Lorentz cavity. The effect of the outer shape of the

body shall for the moment not be considered, e.g. such as in the case of a
slab (thin film) with in-plane magnetization.

2. We now consider a body made of a dilute assembly of magnetic particles

in a non-magnetic matrix, with porosity p defined as the fraction of volume
occupied by the particles. When one focuses on a given particle, the dipolar

field arising from all other particles may be calculated in a mean field

approach, coming from a body carrying magnetization with modulus pMs.
Let us call again Nc the shape of the cavity of neighbors surrounding the

particle. Provide an expression for Hd,c felt at the nanoparticle locus, as

arising from this cavity effect.

3. Still for the body made of a dilute assembly of magnetic particles in a

non-magnetic matrix, consider now the superposition of all three effects:

the Lorentz cavity, the outer shape of the body with demagnetizing matrix

Nb, the shape of each particle with demagnetizing matrix Np, the latter

assumed to all share the same tensor with no angular distribution of the

axes. Express the dipolar field Hd felt inside each nanoparticle, and derive

an expression forN defined as< Hd >= −N ·M. Check that it fulfillsTrN = 1.
4. Apply the above calculations in the following cases. For each case draw

a sketch, name the main axes, calculate the demagnetizing coefficients

along all three directions, and comment on the limiting cases p → 0 and

p → 1. Provide an expression for the angular variation of the density of

dipolar energy Ed, and calculate the value of p for which the system behaves
isotropically.

(a) Spherical particles in a spherical body; the Lorentz cavity shall be

assumed to be spherical.

(b) Spherical particles in a slab (thin film). Discuss what proper choice

shall be made for the shape of the Lorentz cavity, in the case of slab

thickness much larger than the inter-particle distance.

(c) Close-to-infinitely-long cylinders packed in a thin-film body, with their

axis perpendicular to the film. Discuss what proper choice shall be

made for the shape of the Lorentz cavity, in the case where the film

thickness is much larger than the inter-cylinder distance.
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Problem 4: More about units

Here we derive the dimensions for physical quantities of use in magnetism,

and their conversions between cgs-Gauss and SI.

4.1. Notations

We use the following notations:

• X is a physical quantity, such as force in F = mg. It may be written X for
vectors.

• dim X is the dimension of X expressed in terms of powers of fundamental
dimensions, here length (L), mass (M), time (T) and electrical current (I). For

example, dimensions of speed and electrical charges read: dim v = L ·T−1

and dim q = I ·T. As a shortcut wewill use here a vectormatrix to summarize
the dimension of quantities, with components the powers of fundamental

dimensions; it will be written [X] for the dimension of X . The above examples
now read [v] = [L] − [T] = [1 0 −1 0] and [q] = [I] + [T] = [0 0 1 1]. We use
shortcuts [L], [M], [T] and [I] for the four fundamental dimensions.

• In a system of units α (e.g. SI or cgs-Gauss) a physical quantity is evaluated
numerically based on the unit physical quantities: X = Xα〈X〉α. Xα is a
number, while 〈X〉α is the standard (i.e., used as unit) for the physical
quantity in the system considered. For example 〈L〉SI is a length of one
meter, while 〈L〉cgs is a length of one centimeter: 〈L〉SI = 100〈L〉cgs. For derived
dimensions we use the matrix notation. For example the unit quantity for

speed in system α would be written 〈10−10〉α.

4.2. Expressing dimensions

• Based on laws for mechanics, find dimensions for force F , energy E and

power P, and their volume density E and P.
• Based on the above, find dimensions for electric field E, voltage U, resis-
tance R, resistivity ρ, permittivity ε0.

• Find dimensions for magnetic moments µ, magnetic field and magnetiza-

tion H andM, induction B and flux φ, and permeability µ0.

4.3. Conversions

Physics does not depend on the choice for a system of units, so doesn’t any

physical quantity X . The conversions between its numerical values Xα and Xβ in
two such systems is readily obtained from the relationship between 〈X〉α and 〈X〉β .
In the cgs-Gauss system, the unit for length, mass and time are centimeter, gram

and second. The electric current may also be considered as existing and named
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Biot or abampère, equivalent to 10A. Thus we have the following conversion

relationships: 〈L〉SI = 10
2〈L〉cgs. Similarly we have 〈M〉SI = 10

3〈M〉cgs, 〈T〉SI = 〈T〉cgs
and 〈I〉SI = 10−1〈I〉cgs.

In practice conversion can be formally written the following way: X = Xα〈X〉α =Xβ〈X〉β . Let us consider length l as a example. l = lSI〈L〉SI = lcgs〈L〉cgs. From
the above we readily have: lSI = (1/100)lcgs. Thus the numerical value for the
length of an olympic swimming pool is 5000 in cgs, and 50 in SI. For derived

units (combination of elementary units), 〈X〉α is decomposed in elementary units
in both systems, whose relationship is known. For example for speed: 〈v〉α =
〈L〉α〈T〉−1α .
Exhibit the conversion factor for these various quantities, of use for mag-

netism:

• Force F, energy E, energy per unit area Es, energy per unit volume E. The
units for force and energy in the cgs-Gauss system are called dyne and erg,

respectively.

• Express the conversion for magnetic induction B and magnetization M,
whose units in cgs-Gauss are called gauss and emu/cm3

, respectively.

Express related quantities such as magnetic flux φ and magnetic moment µ.

• Let us recall that magnetic field is defined in SI with B = µ0(H + M), whereas
in cgs-Gauss with B = H + 4πM, with the unit called œrsted. Express the

conversion for µ0 and comment. Then express the conversion for magnetic

field H.
• Discuss the cases of magnetic susceptibility and demagnetizing coefficients.

In SI these are defined by χ = dM/dH and Hd = −NM. What should be their
definition in the cgs-Gauss system so that these dimensionless quantities

have the same numerical value in both systems? Notice that definitions

sometimes used in the cgs-Gauss system are: Hd = −4πNM and Hd = −DM.

Problem 5: More about the Bloch domain wall

The purpose of this problem is to go deeper in the mathematics describing

the textbook case of the Bloch domain wall discussed in sec.5. The first section is

mainly mathematics and may be skipped if desired.

5.1. Euler-Lagrange equation

We will seek to exhibit a magnetization configuration that minimizes an

energy density integrated over an entire system. Finding the minimum of a

continuous quantity integrated over space is a common problem solved through

Euler-Lagrange equation, which we will deal with in a textbook one-dimensional

framework here. Let us consider a microscopic variable defined as E(θ, dθ/dx),
where x is the spatial coordinate and θ a quantity defined at each point. In the
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case of micromagnetism we will have:

E
[
θ(x), dθ

dx (x)
]
= A
[
dθ

dx (x)
]2
+ Ea[θ(x)] (I.43)

When applied to micromagnetism Ea(θ) may contain anisotropy, Zeeman and
dipolar terms (the latter taken as local through the hypothesis of demagnetizing

coefficients or other approximations). We define the integrated quantity:

E[θ] =

∫ xB
xA
E
[
θ(x), dθ

dx (x)
]
dx + EA [θ(xA)] + EB [θ(xB)] . (I.44)

A and B are the boundaries of the system, while EA(θ) and EB(θ) are surface
energy terms. These may stem from, e.g., surface magnetic anisotropy, or the
Dzyaloshinskii-Moriya interaction. Let us now consider an infinitesimal function

variation δθ(x) for θ. Show that extrema of E are determined by the following local
relationships:

∂E
∂θ
− d

dx
(
∂E
∂ dθ
dx

)
≡ 0 (I.45)

dEA
dθ
− ∂E
∂ dθ
dx

∣∣∣∣∣A = 0 (I.46)

dEB
dθ
+
∂E
∂ dθ
dx

∣∣∣∣∣B = 0 (I.47)

Note that equations Eq.(I.46) and Eq.(I.47) differ in sign because a surface quantity

should be defined with respect to the unit vector normal to the surface, with a

unique convention for the sense, such as the outwards normal. Here the abscissa

x is outwards for point B however inwards at point A. An alternative microscopic
explanation would be that for a given sign of dθ/dx the exchange torque exerted
on amoment to the right (at point B) is opposite to that exerted to the left (at point
A), whereas the torque exerted by a surface anisotropy energy solely depends on
θ.

5.2. Micromagnetic Euler equation

Apply the above equations to the case of micromagnetism [Eq.(I.43)]. Starting

from Eq.(I.45) exhibit a differential equation linking Ea(θ) with dθ/dx. Equations
I.46-I.47 are called Brown equations. EA(θ) and EB(θ) may be surface magnetic
anisotropy, for instance. Discuss the microscopic meaning of these equations.

Comment the special case of free boundary conditions (all bulk and surface

energy terms vanish at A and B), in terms of energy partition. Show that E can
be expressed as:
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Figure I.17 – Bloch domain wall profile: the exact solution (green dots) versus the

asymptotic profile (red line). The solution with linear ersatz is shown as a dark line.

E[θ] = 2

∫ θ(xB)
θ(xA)

√AEa(θ) dθ (I.48)

5.3. The Bloch domain wall

Let us assume the following free boundary conditions, mimicking two ex-

tended domains with opposite magnetization vectors separated by a domain

wall whose profile we propose to derive here: θ(−∞) = 0 and θ(+∞) = π. We

will assume the simplest form of magnetic anisotropy, uniaxial of second order:

E(θ) = Ku sin2 θ.
Based on a dimensional analysis give approximate expressions for both the

domain wall width δ and the domain wall energy E. What are the SI units for E?

Discuss the form of these quantities in relation with the meaning and effects of

exchange and anisotropy.

By integrating the equations exhibited in the previous section, derive now the

exact profile of the domain wall:

θ(x) = 2 arctan
(
exp

x
Δu
)

(I.49)

and its total energy E. Δu =√A/Ku is the anisotropy exchange length.
The most common way to define the Bloch domain wall width δBl is by

replacing the exact θ(x) by its linear asymptotes (red line on Figure I.17). Derive
δBl as a function of Δu.
Let us stress several issues:

• The model of the Bloch wall was named after D. Bloch who published this

model in 1932[50].
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• As often in physics we have seen in this simple example that a dimensional

analysis yields a good insight into a micromagnetic situation. It is always

worthwhile starting with such an analysis before undertaking complex

analytical or numerical approaches, which especially for the latter may hide

the physics at play.

• We have exhibited here a characteristic length scale in magnetism. Other

length scales may occur, depending on the energy terms in balance. The

physics at play will often depend on the dimensions of your system with

respect to the length scales relevant in your case. Starting with such an

analysis is also wise.

• When the system has a finite size the anisotropy and exchange energy do

not cancel at the boundaries. The integration of Euler’s equations is more

tedious, involving elliptical functions.

Problem 6: Extraction and vibration magnetometer

6.1. Preamble

Here we consider the principle of extraction magnetometry, either in full

quasi-dc extraction operation, or in the vibration mode (Vibrating Sample Mag-

netometer, VSM). Their purpose is to estimate the magnetic moment held by

a sample, possibly as a function of field, temperature, time etc. The general

principle is to move a sample along the axis of a coil of radius R. This induces
a change over time of the flux in the coil, arising from the sample, which may

be measured thanks to the induced electromotive force (EMF)
I.14
. In a so-called

extraction magnetometer the sample is moved sufficiently away from end to the

other along the axis so as to nearly cancel the flux, resulting in an absolute

measurement of the flux. In a vibrating sample magnetometer the sample

vibrates along the axis at several tens of hertz close to the coil, inducing a large

EMF and opening the use of a lock-in technique to further reducing the noise,

however the full extraction curve is not measured, resulting in higher sensitivity

to artefacts, as will be discussed below.

6.2. Flux in a single coil

Based on the Biot and Savart formula, express as a vector the induction B(z)
arising along the axis of a circular coil of radius R with electrical current I. Below
is reminded the Biot and Savart formula expressing at an arbitrary location M in
space the infinitesimal induction δB arising from a current I on an infinitesimal
I.14
An alternative and very sensitive device for measuring the flux through a coil is SQUID:

Superconducting Quantum Interference Device.
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element δl at location P :
δB = µ0Iδl(P)× PM

4πPM3
(I.50)

For reaching a high sensitivity the coil is wound several time, N � 1. In the

following we will assume N = 1000 for numerics. We will assume here that

the location of all loops is the same. Based on the reciprocity theorem for

induction, derive the magnetic flux Φ(z) in the series of coils, arising from a

pinpoint magnetic moment µ located on the axis of the coil. Φ(z) will be expressed
as Φ(z) = Kf (z), with f (z) a dimensionless function. Draw a schematics of f (z)
Numerics: what is the uniform magnetic induction that would be required to

create a flux in these coils, equivalent to that of a square piece of thin film of

iron of lateral size 1 cm and thickness 1 nm (reminder: the magnetization of iron is

≈ 1.73×106 A/m). Comment with respect to themagnitude of the earth magnetic
field.

6.3. Vibrating in a single coil

The sample is now moved periodically along the axis of the coil, around the

location z0: z(t) = z0 + Δz cos(ωt). Based on a first-order expansion in Δz/z0, derive
the EMF e(t) induced in the coil. Draw a schematics of this curve. At which position
is found the maximum of magnitude for e(t)?
Numerics: calculate the magnitude of e(t) arising from the iron thin film men-
tioned above with a frequency of 30Hz and Δz = 1mm. Comment about this

value.

6.4. Noise in the signal

Owing to a mechanical coupling the coils for measurement vibrate with

angular frequency ω in the supposedly static induction B applied tomagnetize the
sample. Let us assume that due the coils’ imperfections or finite size this induc-

tion displays an inhomogeneity ΔB at the spatial scale for vibration of the sample.
Derive the EMF induced in the measuring coils due to this inhomogeneity.

Figure I.18 – Coil com-

pensation in magnetome-

ters. Geometry for two

coils winded in opposite di-

rections

Numerics: vibration ofmagnitude 1µm in an induc-

tion of strength 1 T, with a relative change of 10
−3

over a distance of 5mm. Comment the value.

6.5. Winding in opposition

The above noise can be reduced by using two

coils with same axis, measured in series however

wound in opposite senses (Figure I.18). The mea-

sured EMF is then etot(t) = e2(t)−e1(t), and the sample
is vibrated at equal distance from the two coils, at

the position z0 such that the signal is maximum
(see above). Why is the above noise significantly

reduced? Comment this setup with respect to the
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Helmoltz geometry for two coils.

Problem 7: Magnetic force mi-

croscopy

This problem is an extension of the short para-

graph about magnetic force microscopy in this

chapter. This paragraph should be read first, before

addressing this problem.

7.1. The mechanical oscillator

The dynamics of the AFM cantilever is modeled by a mechanical oscillator:

md2z
dt2 + Γ

dz
dt + k(z− z0) = F(z, t) (I.51)

F(z, t) is a force arising from either the operator or from the tip-sample interaction,
and z0 is the equilibrium position without applied force. m, Γ and k are the
oscillator mass, damping and stiffness, respectively. We use the notation ω0 =√k/m and Q = √km/Γ , the latter being called the quality factor.
Rewrite Eq.(I.51) with the use of ω0 and Q. The cantilever is excited by the

operator with F(t) = Fexcejωt. Provide the transfer function H = z/F , the gain G =
|H| and phase shift ϕ = arg(H), as well as the following quantities, at resonance:
angular velocity ωr, magnitude zr and phase ϕr. For the case Q � 1 calculate the

magnitude at resonance, and the full-width at half maximum (FWHM) Δωr of the
resonance peak. Comment.

7.2. AFM in the static and dynamic modes

The cantilever is brought in the vicinity of the surface, inducing a non-zero

force F(z) between the tip and sample, adding up to the sinusoidal from the

operator. For the sake of simplicity we will model the variations of F using a
simple affine function: F(z) = F(z0) + (z− z0)∂F/∂z.
Calculate the new position at equilibrium zeq. Rewrite Eq.(I.51) in this case,

and in the case Q � 1 the normalized change of resonance angular velocity

δωr/ω0. In most cases the cantilever is excited at a constant frequency ωexc and

the force gradient is monitored through the change of phase Δϕ. Show that
Δϕ = −(Q/k)∂F/∂z.
7.3. Modeling forces

We assume here that the magnetization configurations of both the tip and the

sample are not influenced one by another. The vertical component of the force

applied by the sample on the tip is F = −∂E/∂z, where E is the mutual energy. The
tip may be modeled either by a magnetic dipole µ, or by a magnetic monopole
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q) (in practice tips may be modeled by a linear combination of both components).
For both models express to which z derivative of the vertical component of the
sample stray field Hd,z are proportional the deflection in the static AFMmode, and
the frequency shift in the dynamic AFM mode.

Numerical evaluation – A typical MFM cantilever hasQ = 1000 and k = 4N/m.
Modeling both the tip and samples by a magnetic dipole made of Co with a

diameter 25 nm, and assuming a probing distance of 50 nm, provide a crude

estimate of the frequency shift expected. Comment.



Chapter II

Magnetism and magnetic domains

in low dimensions

Overview

In the previous chapter we have recalled basic knowledge about magnetic materials.

However, both their microscopic and micromagnetic properties depend on the

dimension and size of the system considered, because of geometrical reasons or

related to characteristic length scales to be compared to the system’s dimensions.

This chapter covers the impact of dimensionality and dimensions on all aspects

which matter in nanomagnetism: magnetic ordering, magnetic anisotropy, domains

and domain walls. While thin films are a textbook case of reduction of dimensionality

easy to consider due to the translational symmetry, we also progressively cover the

case of nanostructures. This chapter is concerned with static properties only. The

impact of dimensionality on magnetization reversal, dynamics and spintronics are to

be found in the following chapters.
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1 Magnetic ordering in low dimensions

1.1 Ordering temperature

Themain feature of a ferromagnetic body is spontaneous ordering below a critical

temperature TC, called Curie temperature. It was Weiss who first proposed a

mean-field approach to describe the ordering. In this theory it is postulated that

the local moments feel an internal magnetic field

Hi = nWMs + H (II.1)

where H is the external field, and nWMs is the co-called molecular field. This
is a phenomenological representation of magnetic exchange, whose quantum-

mechanical origin was not known at the time. A semi-classical description allows

to link the Heisenberg hamiltonian Ĥ = −2
∑
i>j Ji,jŜi.Ŝj with nW:

2ZJi,j = µ0nWng2J µB2 (II.2)

where Z is the number of nearest neighbors, n the volume density of sites, each
holding a dimensionless spin S bounded between −J and +J, associated with total
magnetic moment µJ = gJJµBII.1. Based on the site susceptibility related to the
Brillouin function BJ, the expected ordering temperature may be expressed as:

TC = 2ZJi,jJ(J + 1)
3kB (II.3)

The expected Curie temperature is therefore proportional to Z. Let us now draw
trends for the Curie temperature in low dimensions. To do this we consider a thin

film as a model system, and extend the mean-field approach to averaging the

number of nearest neighbors over the entire system. For a film with N layers of
sites with magnetic moments we get: ZN = Z + 2(Zs − Z)/N where Zs is the number
of nearest neighbors of each of the two surface/ interface layers (Figure II.1a).

As Zs < Z we immediately see based on Eq.(II.3) that the ordering temperature
should be reduced. The decrease follows the law TC(t) = TC(∞)−ΔTC(t) with a ΔTC ∼
1/t, with t the film thickness. Our hand-waving considerations are confirmed by a
more rigorous layer-dependent mean-field theory[51]. Going beyond mean-field,

one may find other critical exponents λ for TC ∼ t−λ.
As a rule of thumb, following Eq.(II.3) TC should be decreased to half the bulk

ordering temperature for N equaling one or two atomic layers. Figure II.1b-c

shows the Ms(T ) variation and the Curie temperature measured for several types
of ultrathin films, where the latter prediction appears largely valid, although the

scaling law is best fitted with λ = 1.27± 0.20.

Finally, the Ms(T ) law again depends on the model used (dimensionality, type
II.1
Beware of this local possible confusion between the exchange constant J, and the total angular

momentum J.
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Figure II.1 –Magnetic ordering in lowdimensions, here withN = 5 atomic layers.
(a) Counting the reduced average number of nearest neighbors in a thin film withN atomic layers. Example of an experimental determination of (b) the temperature
dependence of magnetization and (c) the Curie temperature in various ultrathin

film materials[52].

of moment, ordering model), and so do critical exponents in both limits of T → 0
+

and T → TC−. In the low temperature range the decay is dominated by spin waves
and follows a Bloch law:

Ms(T ) = Ms(T = 0K)[1− bNT3/2] (II.4)

whereas mean-field theory predicts an exponentially-weak decay. bN is the spin-
wave parameters, which again happens to be thickness-dependent and well fitted

with a 1/t law[52]. The case of a truly two-dimensional system should clearly
be treated on a different footing due to the absence of out-of-plane excitations.

While Onsager derived an expression for the finite Curie temperature in a 2D

array of Ising spins[53], the Mermin and Wagner theorem states that long-

range ordering is not expected to occur at finite temperature for a 2D array of

Heisenberg spins; the divergence of susceptibility is found only for T → 0K.

This problem has long excited experimentalists, with no report of absence of

ferromagnetism in any experimental 2d system. The reason is that an energy

gap is opened in the spin-wave spectrum as soon as magnetic anisotropy sets in,

of magnetocrystalline origin[54] or even simply magnetostatic[55].

Promotion of magnetic ordering in low dimensions. Said in a hand-

waving fashion, any source of anisotropy mimics Ising spins at suffi-

ciently low temperature, going in the direction of the Onsager solution.

In one dimension thermal fluctuations have an even stronger impact, leading

to absence of ordering at any finite temperature even for Ising spins. Thus

the correlation length is not expected to diverge until truly zero temperature.

Experimental results pertaining to such systems are available and indeed points

at the existence of finite-size spin blocks[56].
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Figure II.2 – Band ferromagnetism at interfaces. Schematics of the effect of

band narrowing on Stoner criterion and the magnitude of the magnetic moment.

1.2 Ground-state magnetic moment

Here we discuss the magnitude of the ground-state spontaneous magnetization

at zero temperature. The case of itinerant magnetism in 3d metals is particularly
well documented, and the general trend is physically interesting. Let us consider

the case of a free-standing layer, i.e. with no supporting nor capping material.
Due to the loss of coordination at both surfaces, 3d bands are expected to
narrow (Figure II.2). As the total number of electrons is conserved this should

help satisfying Stoner criterium 1− Iρ(εF) < 0 where I is the exchange integral and
ρ(εF) the density of electrons for each spin channel. This in turn should enhance

the imbalance of the number of occupied states in both spin channels, and thus

magnetization. This trend may be understood as moving towards free electron

magnetism where Hund’s rules apply and orbital momentum is not quenched,

hence giving rise to a larger magnetic moment per atom. In most systems this

trend is confirmed through ab initio calculations and observed experimentally[52].
Exceptions (reduction of moment with respect to the bulk) may be explained by

phenomenawhose consequences aremore difficult to predict such as epitaxial or

surface strain, dislocations, hybridization and charge transfer with an interfacial

material, quantum-size effects. . . . Mainly the latter play a role in more localized

magnetism, leading to effects more difficult to predict.

Thin films are easy to model and simulate thanks to translational invariance.

However low-dimensional effects arise equally in other systems such as clusters.

The magnetic moment per atom has been measured to be clearly enhanced in

these, evidenced in-flight with Stern-Gerlach experiments or capped with sensi-

tive techniques such as XMCD[57]. The Stoner criterium may even be fulfilled in

clusters, while it is not in the bulk form. A famous case is Rhodium[58, 59].
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Summary

Magnetic ordering in low dimensions. We have reviewed the basics of ferromag-

netic ordering in low dimensions for itinerant magnetism. The general trend is that

of two competing effects. The zero-temperature ground state displays a moment

generally larger than that of the bulk, due to band narrowing. An opposite trend,

which is the one of highest importance, is the enhanced decay of magnetization
with temperature. At finite temperature both effects compete, requiring care in the

analysis of measurements.

2 Magnetic anisotropy in low dimensions

We first consider magnetostatic anisotropy, long-ranged and related to the outer

shape of a system. We then consider the magnetic anisotropy of microscopic

origin, arising from spin-orbit and the crystal electric field. These are magne-

tocrystalline and magnetoelastic anisotropies, which were introduced in sec.3.

We consider thin films as a model system, however those concepts apply to all

low-dimensional systems, however in a more complex manner.

2.1 Dipolar anisotropy

In sec.4.3 we introduced the concept of demagnetizing factors. These were

calculated on the assumption that the system under consideration is uniformly

magnetized. Although this may be questionable in some cases even under

applied field, in the present section we will rely on these factors for a first

discussion. In this framework we have seen [Eq.(I.30)] that the dipolar contri-

bution to magnetic anisotropy reads, after proper diagonalization defining the

so-called main directions of anisotropy: Ed = KdNim2i , and the internal so-called
demagnetizing field reads Hd = −NiMsmi î, where i runs over all three main
directions, and Nx + Ny + Nz = 1.
For thin films Nx = Ny = 0 along the two in-plane directions, resulting in zero

demagnetizing field and demagnetizing energy. Nz=1, resulting in Ed = Kd andHd =
−Msẑ for perpendicular magnetization. The resulting demagnetizing induction
µ0Ms is of the order of one tesla for common materials (Table I.2).

In-plane magnetization for thin films. Unless the material displays a

very large microscopic energy, or a very strong field is applied perpen-

dicular to the plane, the magnetization of a thin film lies preferentially

in-the-plane.

For cases other than films, however of reduced dimension in at least one

direction, we will speak of nanostructures. The demagnetizing factors are all
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three non-zero, and again if no microscopic energy or applied field applies, the

magnetization will have a tendency to point along the direction with the lowest

demagnetizing factors.

Let us add a fine point often subject to controversy, however of great im-

portance for domains and magnetization reversal in nanostructures: the range

of dipolar interactions. Dipolar interactions are commonly described as long-

ranged. This is so because the stray field from a magnetic dipolar decays

with distance like 1/r3. Thus, an upper bound for the stray field at a given
location is of type

∫
(1/r3)4πr2dr, summing over the entire system magnitudes

instead of vectors. This diverges logarithmically (however converges if vectors

are considered instead of magnitudes), revealing the long range of dipolar fields.

More precisely, it is straightforward to show that what matters is the solid angle

under which a surface density of charges is seen, not its distance. Let us now

consider a flat system, for instance an element patterned out of a thin film with

lithography. The upper bound becomes
∫
(1/r3)2πrdr, which converges to a finite

value with a radius of convergence scaling with the sample thickness. In other

words:

Range of dipolar interactions. Dipolar energy is short-ranged in two

dimensions. This can be understood in a hand-waving manner as most

of stray fields escape in the third dimension, not contributing to the

self energy −(1/2)µ0Ms ·Hd. This implies that stray- and demagnetizing
fields are often highly non-homogeneous, with important consequences

on both magnetization patterns and magnetization reversal processes.

For the same reason, the concept of demagnetizing factors and energy

shall be used with great care in such cases.

Ellipses versus ellipsoids. Elements with two flat surfaces (made out

of a thin film) and with a circular or elliptical shape are not ellipsoids.

Their demagnetizing field is therefore highly non-uniform, as for all flat

elements.

2.2 Projection of magnetocrystalline anisotropy due to dipo-

lar energy

One consequence of magnetostatic energy is to favor the alignement of mag-

netization in directions with small demagnetizing coefficients. If magnetostatic

energy prevails over magnetocrystalline anisotropy energy, themagnetization will

tend to lie in certain planes or directions imposed by the former, while the latter

will play a role only through its projection in these planes or directions. Let us

consider the example of a cubic material; its magnetocrystalline anisotropy is

described by Eq.(I.8), whose magnitude is measured through the parameter K1c. If
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Figure II.3 – Crystal directions for the (110) texture. Definition of axes for a cubic

crystal projected along the (110) plane.

K1c is much smaller than Kd then the direction of magnetization will be imposed by
the latter, for instance in-the-plane for a thin film (sec.4.3). As an example, let us

consider a cubic crystal cut along a (110) plane as shown on Figure II.3, with (θ,ϕ)

spherical coordinates. θ is measured with respect to the axis perpendicular to the

plane, while ϕ is the in-plane angle. When restricted to θ = 90◦, Eq.(I.8) reads:

Emc,cub = K1c sin2 ϕ + (−3
4
K1c + 1

4
K2c + K3c) sin4 ϕ + . . . (II.5)

Then, the effective anisotropy in the plane becomes uniaxial.

Symmetry and reduction of dimensionality. We illustrated a fea-

ture of symmetries with application to many fields in physics, such

as bulk versus surface crystallography: considering a function defined

in a space with d dimensions and displaying certains symmetries, its
projection or restriction into a sub-space of dimension lower than d
does not necessarily preserve or restrict the initial symmetry, even if

the sub-space is an element of symmetry of the initial function.

2.3 Interface magnetic anisotropy

The local environment of atoms differs at both surfaces of a thin film with respect

to the bulk one. In 1954 L. NÉEL suggested that this breaking of symmetry induced

by the loss of translational invariance along the normal to the film, should result

in an additional term to magnetic anisotropy. This was well before technology

enabled to produce films so thin and well characterized that experiments could

suggest the effect. This additional term is called surface magnetic anisotropy, or

interface magnetic anisotropy, or also Néel magnetic anisotropy
II.2
.

II.2
In principle interface is appropriate to describe a thin magnetic film in contact with another

material while surface is appropriate to describe a free surface (in contact with vacuum). This

latter case is in principle restricted to fundamental investigations performed in situ in UHV, where
a surface may remain free of contaminant for some time. In practice, both terms are often used
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Figure II.4 – Perpendicular

anisotropy. A historical example

of 1/t plot for evaluating interfacial
anisotropy[60].

As for magnetocrystalline anisotropy, in-

terface anisotropy may favor an easy direc-

tion or an easy plane, and be decomposed in

angular terms with various orders. As it ap-

plies only once per each interface, its effects

becomes vanishingly small at large thick-

ness. In practice it is observed that its effect

becomes negligible beyond a few nanome-

ters. One speaks of ultra thin films in

this range smaller than characteristic length

scales, where magnetization is obviously al-

lowed to vary along the thickness. At a given

lateral position its magnetization
II.3
may be

described as a single vector, the so-called

macrospin, on which apply both surface and

bulk magnetic anisotropy. As a simple ex-

ample let us assume that both terms are

uniaxial along the same axis, with two iden-

tical surfaces. The resulting anisotropy then

reads Kvt + 2Ks with Kv and Ks the volume and surface contributions. The effective
density of energy thus reads:

Keff = Kv + 2Kst (II.6)

Following this, the usual way to estimate Ks in theory and experiments is to plotKeff versus 1/t. The intercept with the y axis should yield the bulk anisotropy, while
the slope should yield Ks (Figure II.4). Interfacial anisotropies between various
types of materials have thus been tabulated[52, 61] (Table II.1). Ks indeed depends
on the material, may be of different sign, and is of the order of 0.1mJ ·m−2. How-
ever, consider these numbers as indications. We will indeed see in the following

the complexity of the underlying physics, which induces a subtle dependence on

slight variations of the material structure, interfaces, stress etc.

In its 1954 model Néel proposed the estimation of an order of magnitude for

Ks values, based on the phenomenological analogy between removing the atoms
to create an interface, and pulling them away infinitesimally. Ks was then linked
with magneto-elastic constants of the material, with surprisingly good agreement

on the order of magnitude, although the exact value and even the sign may be

wrong. The so-called pair model of Néel aims at describing the direction and
material-dependence of surface anisotropy by counting the bounds between a

surface atom and the neighbors, and associate them with a uniaxial angular

function.

Theory can also be used to evaluate Ks values. Letting aside ab initio calcu-
lations, for 3d metals tight binding links magnetocrystalline anisotropy with the
interchangeably
II.3
More precisely its moment per unit area, thus expressed in amperes
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Table II.1 – Tabulated indications of values of interfacial anisotropy Ks
(mJ/m

2
)[61].

Co Fe Ni

Ag 0.22± 0.07 0.4± 0.1 −0.1
Au 0.5± 0.1 0.6± 0.2

Cu 0.15± 0.05 0.4± 0.2 −0.2± 0.1

Gr 0.15

Ir 0.8

Pd 0.5± 0.8 0.2± 0.1 0.35± 0.1

Ru −.45± 0.05

W −0.45± 0.15 −1.9

anisotropy or the orbital magnetic moment. For a uniaxial anisotropy the energy

per magnetic atom is:

κ = α
ξ

4µB
ΔµL. (II.7)

ξ is the spin-orbit coupling, defined by contribution−ξŜ.L̂ to the Hamiltonian. ΔµL
is the difference of orbital magnetic moment between hard and easy directions,

and α is a factor close to unity and only weakly related with the details of the band

structure.

In bulk 3d metals the orbital momentum is nearly fully quenched because
crystal electric field energy dominates over spin-orbit, and eigen functions in

a cubic symmetry should have nearly zero orbital momentum. Thus ΔµL are
very weak, typically of the order of 10

−4 µB/atom, yielding K ≈ 10
4
J/m3

. At

both surfaces and interfaces this anisotropy is enhanced close to 0.1µB/atom,

inducing an anisotropy of energy of the order of 1meV per surface atom, which

lies close to 1mJ/m2
. The link between surface magnetic anisotropy and ΔµL has

been checked experimentally and by ab initio calculations to be essentially valid.
Some experiments hint at a quantitative link between bulk and surface magnetic

anisotropy[62], however the universality of this link remains speculative.

The most dramatic consequence of surface magnetic anisotropy, with also

of technological use, arises when Ks favors the alignement of magnetization
along the normal to a thin film : Es = Ks cos2(θ) with Ks < 0 and θ the angle

between magnetization and the normal to the film. If Keff, defined in Eq.(II.6),
is negative and becomes greater in absolute value than Kd for a realistic critical
value of thickness tc, magnetization will point spontaneously along the normal
to the film. This is perpendicular magnetic anisotropy (PMA). For a long time

the most efficient interfaces to promote PMA combined 3d elements for the
ferromagnet, and a heavy element to bring in spin-orbit. Prototypical examples

are Co/Au, Co/Pt and Co/Pd. tc is of the order of 2 nm or less. Recently even larger
contributions to perpendicular anisotropy, and thus larger critical thicknesses (up

to 3.5 nm), have been reported at the interface between 3d metals and oxides,

with the prototypical case of Co/MgO. If films thicker than this are needed with
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perpendicular magnetization, a route is the fabrication of multilayers[61].

Perpendicular magnetization for technology. Perpendicular mag-

netization has become very important for storage applications, such

as hard-disk drives (introduced in 2005 in shipped products), and the

emerging solid-state magnetic random access memories (MRAM). First,

it allows to define a unique direction of easy axis, unlike the case of

anisotropy for planar magnetization, relying on textured materials with

planar-isotropic grains, or elements of elongated shape however with an

unavoidable lithography-related spread of orientation. This reduces the

distribution of properties, which is crucial for the proper functioning of

a device. Second, it allows to increase the strength of anisotropy, which

provides the energy barrier promoting the long-term conservation of

information. The latter is particularly true for shape anisotropy , which

in practice cannot exceed much 10% of Ms in planar flat elements.

2.4 Magnetoelastic anisotropy

The concept of magnetic surface anisotropy has been presented above as a

textbook case. In fact it is not the single source of modification of magnetic

anisotropy in ultrathin films. We review here an equally important source,

magnetoelastic anisotropy.

In the bulk form strain may be obtained through stress applied by an external

user. Strain is always present in thin films to some extent even at rest. This is due

to the effect of the supporting material (and to some smaller extent the capping

material), which having a lattice parameter and possibly symmetry different from

that of the overgrown magnetic material, stresses the latter. Stress may also

appear upon cooling (resp. warming up) thin films fabricated at high (resp. low)

temperature. This results in a strain field in the magnetic film, generally not

uniform, which gives rise to a magnetoelastic contribution to the total MAE.

Strain and stress. One should not confuse strain with stress. The

former is the deformation, the latter is the force per area, related to

the strain.

To first order magnetoelastic anisotropy is proportional to the matrix ele-

ments of strain. Group theory predicts the type of coupling terms[63], not their

strength. In thin films there clearly exists an asymmetry between out-of-plane

and in-plane directions: stress is applied in the latter, while along the former the

film is free to relax. This results in a uniaxial magnetoelastic contribution.

Let us understand the qualitative effect of magnetoelasticity in thin films using

a simple model. We consider the epitaxial growth of a film material (lattice

parameter af) on a substrate (lattice parameter as), the latter being assumed
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to be rigid. The lattice misfit is defined as η = (af − as)/as. During growth the
deposited material will tend to relax its strain ε = (a − af)/af through, e.g., the
introduction of interfacial dislocations. We further assume that the linear energy

cost per dislocation k does not depend on the density of dislocations, and that
each dislocation allows the coincidence of N+ 1 atoms of the film with N substrate
atoms (resp., the reverse), which corresponds to negative (resp. positive) η.

Working in a continuum model, the density of mechanical energy of the system

is :

Emec = 1

2
Cε2 + ktaf |η + ε− ε2| (II.8)

where t is the film thickness and C an elastic constant. The equilibrium value for
a is found through minimization of this equation with the constraint |ε| < |η|:

• Below the critical thickness tc = k/(asC|η|) the introduction of dislocations is
unfavorable, and a = as. The layer is said to be pseudomorph. As a rule of
thumb, tc ≈ 1 nm for η ≈ 2 − 5%. This value is however dependent on the

crystal symmetry, growth temperature and technique of deposition.

• Above tc dislocations are created and allow to reduce strain like: |ε(t)| =k/(asCt).
What we have described so far is a structural model, proposed in 1967

by Jesser[64]. In 1989 Chappert et Bruno applied this model to magneto-

elasticity[65]. They considered linear magneto-elastic terms
II.4
. As a simple case,

let us assume that all deformations may be expressed in terms of ε, so that

Emel = Bε with B a coupling constant. Based on the structural model of Jesser we
derive: Kmel = kB/(asCt). Beyond the pseudomorphic regime we therefore expect
a dependence of Kmel with 1/t, thus exactly like for a contribution of magnetic
interface anisotropy. In most cases magneto-elasticity and surface anisotropy are

intermingled in thin films; it is almost impossible experimentally and conceptually

to disentangle them. Nevertheless, it remains common to designate as surface
anisotropy the total effective contribution revealed as a 1/t variation of the density
of magnetic anisotropy.

2.4.A ANISOTROPY RESULTING FROM THE SYNTHESIS PROCESS

Following the above, it might be expected that beyond a few nanometers of

thickness, the anisotropy of thin films is similar to that of bulk. While this is

often the case, there are cases of persistence for large thickness of a magnetic

anisotropy different from the bulk one.

A first reason is that the Jesser model considers the minimum of energy. In

practice this minimum may not be reached perfectly due to the energy barriers

required to create dislocations, and it is often the case that thin films retain a

fraction of percent of strain. The exact value strongly depends on the couple

II.4
It was recently shown that non-linear effects may be important in thin films[66]. This fact had

not been reported in bulk materials, where plastic deformation sets in well before strain values

large enough for non-linearities may be reached
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of materials, the orientation of the grains, the conditions and technique of

deposition.

A second reason for the persistence of deviations from bulk anisotropy is the

often fine microstructure induced by the growth method. The microstructure

may take the form of grains separated by grain boundaries, incorporation of

foreign atoms (like Ar during sputtering growth), an anisotropic orientation of

atomic bounds etc. This effect has dramatic consequences for materials with

large magnetostriction such as 3d-4f compounds, which can be tailored to display

perpendicular anisotropy for fairly thick films. It is also possible to tailor a uniaxial

anisotropy between two in-plane directions, through deposition under an applied

field like for Permalloy (Ni80Fe20), or deposition with oblique incidence or on a

trenched surface. Another elegant technique to tailor the anisotropy of thin films

is irradiation with ion of medium energy. This irradiation may be done during

growth or post-growth. When the irradiation energy is suitably chosen, the ions

may either favor the mixing of atoms or their segregation, depending on the

thermodynamics trend for random alloying or phase ordering. Irradiating thin

films with perpendicular anisotropy, the former leads to a decrease of anisotropy,

while the latter can lead to an increase[67]. Irradiation may be combined

with masks to deliver films with patterned anisotropy, however no changes in

topography[68].

Summary

Magnetic anisotropy in low dimensions. Contributions to anisotropy of mag-

netic energy in thin films include magnetostatic, magnetocrystalline, interfacial and

magnetoelastic energies. For very thin films the latter two often dominate in the

nanometer range of thickness, opening the way to beating dipolar anisotropy to

display perpendicular magnetization.

3 Domains and domain walls in thin films

3.1 Bloch versus Néel domain walls

In sec.5 and problem sec.5 we considered a textbook case of domain-wall: the

Bloch domain wall, resulting from the competition of exchange energy against

magnetocrystalline anisotropy. A translational invariance along both directions

perpendicular to the domain wall was assumed, so that the problem boiled down

to a unidimensional equation that can be solved.

Translational invariance makes sense in the bulk, where domain walls may

extend laterally on distances much longer than their width. This hypothesis

becomes questionable in thin films, where the core of a Bloch domain wall,

displaying perpendicular magnetization, induces the appearance of magnetic



II.3. DOMAINS AND DOMAIN WALLS IN THIN FILMS 75

Figure II.5 – Schematics for (a) a Bloch domain wall and (b) a Néel domain wall.

charges at both surfaces of the thin film (Figure II.5a).

L. NÉEL was first in addressing this issue and providing a rule-of-thumb

prediction for a cross-over in the nature of domain walls in thin films[69]. In a

thin film of thickness t he considered a domain wall of bulk width w ≈ Δu, such
as determined from exchange and anisotropy energies. He took into account

the finite size effect along the normal to the film, modeling the domain wall as

a cylinder of perpendicular magnetization with an elliptical cross-section of axes

w × t (Figure II.5). For a Bloch domain wall the resulting density of magnetostatic
energy is of the order of Kd w/(w + t), based on demagnetizing coefficients (Ta-
ble I.3). When t < w it becomes more favorable for magnetization in the core
of the domain wall to turn in-the-plane, for which the density of magnetostatic

energy is Kd t/(w + t) (Figure II.5b). This configuration where magnetization turns
in-the-plane, i.e. perpendicular to the domain wall, is called a Néel wall.

In the above model the core of the domain wall was assumed to be rigid

and uniformly magnetized. Besides, its energy was calculated crudely, and is

not suitable for soft magnetic materials where magnetostatic energy dominates

magnetic anisotropy so that no natural width of the domain wall exists. The

phase diagram of Bloch versus Néel wall can then be refined usingmicromagnetic

simulations. These show in the case of soft magnetic material that Néel walls

become stable for thickness below 7Δd (already below 15−20Δd for cross-tie walls,
see next paragraph)e.g. for 50 nm for Permalloy and 20 nm for Fe[70].
Micromagnetic simulations also revealed a phase diagrammore complex than

merely Bloch versus Néel walls (Figure II.6a). Going towards large thicknesses

domain walls undergo a breaking of symmetry with respect to a vertical plane;

they are named asymmetric Néel wall and asymmetric Bloch wall, and were

first proposed in 1969 through both micromagnetic simulation[71] and an ersatz

model[72]. Let us examine the detail of the asymmetric Bloch wall, of higher

practical interest (Figure II.6b). Close to the surface the magnetization turns

in-the-plane; this may be understood from the necessity to eliminate surface

magnetic charges to decrease magnetostatic energy, or in other words to achieve

a flux-closure state. The surface profile of magnetization is similar to that of a

Néel wall, later motivating the name of Néel cap to designate this area of flux-

closure[73]. Notice that the center of the Néel cap is displaced from the vertical of

the core of the Bloch wall, explaining the name asymmetric for this domain wall.

This asymmetry arises so as to reduce now volume magnetic charges, balancing

∂mx/∂x with ∂mz/∂z terms in the divergence of M. Close to the transition from
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(a) (b)

Figure II.6 – (a) phase diagram of domain walls in thin films, calculated for

practical reasons in a strip of finite width[70]. Along the y axis D stands forDicke in German, so thickness t here (b) one of the first success of micromagnetic
simulation, predicting the existence of the asymmetric Bloch domain wall[71].

Figure II.7 – Wall angle and magnetostatic charges. (a) A wall that would not

bisect the direction of magnetization in the neighboring domains would bear a net

charge (b) A wall bisecting the magnetization directions in neighboring domains is

associated with a dipolar line.

Bloch to Néel the cross-section of the asymmetric Bloch wall looks similar to a

vortex, so that the name vortex wall is sometimes used.

3.2 Domain wall angle

We define as wall angle θ, the angle between the direction of magnetization in

two neighboring domains. The properties of a domain wall as a function of its

angle depend on parameters such as film thickness t, anisotropy strength and
symmetry. Here we restrict the discussion to rather soft magnetic materials in

rather thin films, so that most of the energy of a domain wall is of magnetostatic

plus exchange origin.

The density of volume charges in an extended domain wall is−∂Mx/∂x, wherex is the coordinate along the in-plane axis perpendicular to the domain wall (Fig-
ure II.7). Generally a wall is induced to bisect the direction of magnetization of

the two neighboring domains, so that it bears no net magnetic charge and thus

does not contribute significantly to magnetostatic energy through a long-range
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1/r decay of stray field (Figure II.7). Following Néel, we model the core of the
domain wall with a cylinder of elliptical cross-section, and estimate its energy

through the suitable demagnetizing coefficient.

We first consider a Néel wall. The total quantity of charge in each half of the

elliptical cylinder scales with 1 − cos(θ/2), which can be replaced with θ2/8 with a
reasonable accuracy even for not so small angles. As dipolar energy scales with

the square of charges, and assuming that the domain wall width does not depend

significantly on the wall angle, we come to the conclusion that the energy of a Néel

domain wall varies like θ4.

We now consider a Bloch wall. Volume charges can be avoided ifmx is uniform
and equal to cos(θ/2) from one domain to the other, through the domain wall.

This means that, apart from the case θ = 180◦, the core of such a wall has both in-

plane and out-of-plane components, the latter equal to
√
1− cos2(θ/2) = sin(θ/2).

Thus the magnetostatic energy of a Bloch wall scales like sin
2
(θ/2) ∼ θ2, again

neglecting any change in the domain wall width, and the thickness dependence

of the demagnetizing field inside de domain wall.

Wall energy versus angle. The energy of a domain wall depends on

its angle θ. In thin films domain walls are of Néel type with an energy

varying like θ4, much faster than that of a Bloch wall in thicker films,

varying like θ2.

3.3 Composite domain walls

Dramatic consequences result from the convex variation of domain wall energy

with angle outlined above. To set ideas, the cost per unit length of a 90
◦
Néel

wall is less than 10% that of a 180
◦
Néel wall. This means that a 180

◦
Néel wall

may be unstable and be replaced by walls of smaller angle, even if this implies an

increase of the total length of domain wall. This is confirmed experimentally with

the occurrence of composite domain walls.

One type of composite domain wall is the so-called cross-tie (Figure II.8a-b). It

can be checked that each wall fulfills the rule that its direction is bisecting that of

magnetization in the neighboring domains. Cross-tie domain walls occur only in

soft magnetic material, because the extended domain with different orientations

shall not come at the expense of an anisotropy energy. Notice also that as the

energy of a Bloch wall scales like θ2 whereas that of a Néel scales like θ4 (see

previous paragraph), 180
◦
Bloch walls are replaced with cross-tie walls for a

thickness larger than that predicted by the Néel model for the cross-over between

Bloch and Néel.

Another type of composite wall is the zig-zag domain wall. Although domain

walls tend to bisect the direction of neighboring domains, it may happen due to

the history of application of field and nucleation of reversed domains, that two
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Figure II.8 – Composite domain walls in thin films. (a-b) Schematics and MFM

image (13 × 15µm)[74] of a cross-tie wall. On the schematics open and full

dots stand for vortices and antivortices, respectively (c-d) schematics and Kerr

image(350× 450µm)[6] of a zig-zag wall.

domains face each other and are each stabilized, e.g. by a uniaxial anisotropy
or a gradient of external field with opposite signs. A 180

◦
wall is unstable as

the net magnetostatic charge carried would be Ms, the largest possible value.
In this case the domain wall breaks into short segments connected in a zig-

zag line (Figure II.8c-d). Along the segments of the walls have a tendency to

turn 180
◦
to be free of volume charges, implying some continuous rotation

of magnetization in the dihedron formed by two consecutive segments. The

angle of the zig-zag is determined by a complex balance between the reduction

of magnetostatic energy due to the net charge, versus the increase of energy

through the wall length, and anisotropy and exchange energy in the domains.

3.4 Vortices and antivortex

The inspection of Figure II.8a reveals the existence of loci where, from symmetry

and continuity arguments, the direction of magnetization may be in no direction

in the plane. These were called Bloch lines, consisting of a cylinder of perpendic-

ular magnetization separating two Néel walls with opposite directions of in-plane

magnetization. The direction of perpendicular magnetization in a Bloch line is

called the polarity, and summarized by the variable p = ±1. Bloch lines also occur
inside Bloch walls, separating parts of the wall core with opposite directions of

perpendicular magnetization. Thus Bloch lines are the one-dimensional analo-



II.3. DOMAINS AND DOMAIN WALLS IN THIN FILMS 79

gous domain walls, separating two objects of dimensionality larger by one unit.

In Bloch lines exchange and dipolar energy compete, yielding a diameter scaling

with Δd, of the order of 10 nm in usual materials.
For the present case of in-plane magnetization, it is useful to introduce the

concept of winding number defined like:

n = 1

2π

∮
∇θ · d` (II.9)

Integration is performed along a path encircling the Bloch line, and θ is the

angle between the in-plane component ofmagnetization and a reference in-plane

direction. In short, the winding number is the total number magnetization rotates

along a circular contour. Applied to the cross-tie wall, this highlights alternating

Bloch lines with n = 1 and n = −1 (resp. open and full dots on Figure II.8a). A line
such as the former is also called a vortex and such as the latter an anti-vortex.

Notice that through the transformation of a translation-invariant Néel wall with

no Bloch line into a cross-tie wall, the total winding number is thus conserved.

This is a topological property, also called the topological number, which will be

further discussed in the framework of nanostructures (see sec.4).

We also introduce the circulation
II.5
number:

c = − ẑ
2π
·

∮
(̂t ·∇)m× d` (II.10)

or equally written:

c =
1

2π

∮
(∇×m) · ẑ d` (II.11)

where ẑ is the (arbitrary) normal to the plane defining the chirality and t̂ the
unit vector tangent to the integration path. In short, in practice in the case

n = 1 (vortices), the circulation is the sense of rotation of magnetization, either

positive or negative. So, vortices may have circulation ±1, for anticlockwise and
clockwise circulation, respectively. On Figure II.8a) vortices have c = +1.
One also defines a so-called skymrion winding number, to characterize chiral

magnetic bubbles that may occur in the presence of the Dzyaloshinskii-Moriya

interaction (sec.5):

w = 1

4π

x
m ·

(
∂m

∂x ×
∂m

∂y
)
dxdy. (II.12)

Integration is performed over an area this time, and (x, y) are in-plane cartesian
coordinate. w is also called topological charge. The absolute value of w counts
how times magnetization maps all possible 4π directions in space, while its sign

indicate the clockwise or anticlockwise in-plane winding around its core, like for

II.5
Some authors use the name chirality number.
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the winding number n. Skyrmions (see skyrmions) give rise to w = +1, while

antiskyrmions give rise to w = −1. The skyrmion winding number is more
suitable for magnetization textures over a surface, however with the direction

of magnetization continuously mapping all three directions.

Topological numbers. The topology of micromagnetic Bloch lines is

fully characterized by three numbers: polarity p, winding number n and
circulation c. The product pc is also called the chirality. An antivortex
has zero circulation and is therefore non-chiral, while vortices have

c = ±1 depending on the direction of rotation of magnetization, either
clockwise or anticlockwise.

Winding versus skyrmion winding numbers. Care should be taken

to properly define which winding number is being used. Indeed, when

applied to a vortex in the case of planar magnetization, one finds n=1

and w=1/2 although both are called winding numbers or topological

charge.

Bloch points. There exists also a zero-dimensional object, the Bloch

point, separating two parts of a Bloch line with opposite polarities.

For topological (continuity) reasons, at the center of the Bloch point

the magnitude of magnetization vanishes, making it a very peculiar

object[75].

3.5 Films with an out-of-plane anisotropy

Here we consider thin films with a microscopic contribution to the magnetic

anisotropy energy, favoring the direction perpendicular to the plane. Most

depends on the quality factor Q = Ku/Kd and film thickness t. For Q < 1 uniform

in-plane magnetization is a (meta)stable state however with large energy, while

uniform out-of-plane magnetization is not a (meta)stable state. For Q > 1 the

situation is reversed. In all cases a balance between anisotropy energy and

shape anisotropy needs to be found, the best compromise being through non-

uniform states. The competition of all four energy terms leads to a rich phase

diagram, see Ref.6 for a comprehensive theoretical and experimental review. A

schematic classification with no applied field is presented below, and summarized

in Table II.2.

In the case of large thickness (see table and below for numbers), in all cases

the state of lowest energy is one of alternating up-and-down domains, with

a period 2W (Figure II.9a). This pattern is called strong stripe domains. This

situation was first examined by Kittel[76], and later refined by several authors.
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Table II.2 – Perpendicular anisotropy. Summary of the magnetization state of

films with an out-of-plane contribution to magnetic anisotropy. t and W are the
film thickness and the optimum domain width, respectively.

Q < 1 Q > 1t > tc Weak to strong stripe domains

with increasing t. W ∼ t1/2 and
then W ∼ t2/3 upon branching

Strong stripe domains. W ∼ t1/2
and thenW ∼ t2/3 upon branching.
May be hindered by hysteresis.

tc Second order transition (no hys-

teresis in the case of purely uni-

axial anisotropy) from uniform in-

the-plane to weak stripes

Aminimum value forW is reached.

t < tc Uniform in-plane magnetization Perpendicular domains with

diverging W , however quickly

masked by hysteresis.

The alternance cancels surface charges on the average, keeping magnetostatic

energy at a low level. Magnetic anisotropy is also kept at a low level as most of

magnetization lies along an easy direction. The remaining costs in energy arise

first from the vertical domain walls (of Bloch type with in-plane magnetization

to avoid volume charges), second from flux-closure slabs close to the surface

with a complex mixture of anisotropy, dipolar and wall energy. Minimization

of this energy yields straightforwardly an optimum value for W scaling like √t,
more precisely like

√t√AKu/Kd for Q & 1 (Figure II.9a) and like

√t√A/Ku for Q .
1 (Figure II.9b). At quite large thicknesses[6], typically hundreds of nanometers

or micrometers, this law is modified due to branching of domains close to the

surface (Figure II.9c). Branching decreases the energy of closure domains, while

saving wall energy in the bulk of the film. We then have W ∼ t2/3.
For decreasing thickness we shall consider separately two cases. For Q > 1

there exists a critical minimum domain width Wc ≈ 15
√AKu/Kd, which is reached

for tc ≈ Wc/2. Below this thickness flux-closure between neighboring domains
becomes largely ineffective due to the flat shape of the domains, thereby leading

to a sharp increase of W , with ultimately a divergence for t → 0 (Figure II.9d).

For Q < 1 the magnetization in the domains progressively turns in-the-plane, with

a second-order transition towards a uniform in-plane magnetization around t =
2πΔu. This pattern is called weak stripe domains due to the low angle modulation
of direction of magnetization in neighboring domains. Close to the transition the

situation is very simple to describe: the deviations from uniformity are sinusoidal

in space to first order, and one finds W ≈ t.
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Figure II.9 – Stripe domains. Sketches of cross-sections of films with perpendic-

ular magnetization, for (a) open domains (initial Kittel’s model), (b) perfect flux-

closure domains and (c) domain branching. (d) predicted width of domain W with
film thickness t, from ref.6. On the latter figure, on the y axis lc = 2√AKu/Kd.

Hysteresis and stripe domains. In the above, notice that the state

with lowest energy may not be reached for Q > 1, as the uniform state

perpendicular to the plane is (meta)stable. Thus strong stripe domains

may not occur even at large thickness, for very coercivematerials. Below

tc the energy gain resulting from the creation of domains is very weak, so
that the divergence of W is often hidden again behind coercive effects.

Summary

Domains and domain walls in thin films. The features of domain walls are

different in thin films, compared to the bulk. This is mostly related to the need to

reduce dipolar energy, arising because of the loss of translational invariance along

the normal to the film. The thickness of the film has a strong impact, and often

approximations are required to describe the physics analytically.

4 Domains and domain walls in nanostructures

In this section we examine the effect of reducing the lateral dimensions of nanos-

tructures, from large to small nanostructures. We consider first the domains,

followed by special cases of domain walls.
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4.1 Domains in nanostructures with in-plane magnetization

We consider a piece of a thin film of soft magnetic material, quite extended

however of finite lateral dimensions. Under zero applied field these assumptions

allow us to describe the arrangement of magnetization as an in-plane vector field

m of norm unity, and neglect the energy inside and between domain walls. Under

these conditions Van den Berg proposed a geometrical construction to exhibit a

magnetization distribution with zero dipolar energy[77, 78]. As dipolar energy is

necessary zero or positive, this distribution is a ground state.

Figure II.10 – The theory of

flux-closure patterns. The

principle for building a mag-

netizaiton configuration free

of dipolar fields.

Zero dipolar energy can be achieved by cancel-

ing magnetic charges. Absence of surface charges

M · n̂ requires that magnetization remains parallel
to the edge of the nanostructure (Figure II.10); this

is a boundary condition. At any point P at the
border, let us consider the cartesian coordinates

(x, y) with x̂ and ŷ respectively tangent and inward
normal to the boundary. The density of volume

charges reads ∂mx/∂x +∂my/∂y. Asm lies along x̂,
∂mx/∂x = 0. Thus cancelation of volume charges
is achieved if ∂my/∂y = 0; this is the differential

equation to be solved. As my = 0 at the boundary,
absence of volume charges is fulfilled by keepingm normal to the radius originat-

ing from P.
Radii originating from different points at the boundary may intersect, each

propagating inwards magnetization with a different direction, in which case

highlighting the locus of a domain wall. It can be demonstrated that domain walls

in the nanostructure are at the loci of the centers of all circles inscribed inside

the boundary at two or more points. This geometrical construction satisfies that

any domain wall is bisecting the direction of magnetization in the neighboring

domains, a requirement pointed out in sec.3.2. Figure II.11a-b shows examples

of the Van den Berg’s construction. A mechanical analogy of this construction is

sand piles, where lines of equal height stand for flux lines.

Higher-order Van den Berg constructions. Divide a nanostructure

in two or more parts, apply the construction to each of them before

bringing all parts back together: a higher order ground state is found

with zero dipolar energy. An infinity of such states exists. In experi-

ments such states may be prepared through special (de)magnetization

procedures. High order states may also not be stable in a real sample,

because the wall width and energy neglected in the model will become

prohibitively large. Notice also that the construction may still be used in

the case of a weak in-plane magnetic anisotropy in the sample, however

suitably dividing the sample into several parts with lines parallel to the

easy axis of magnetization (Figure II.11)c.
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Figure II.11 – Examples of the geometrical construction of Van den Berg.

(a) first order construction, along with a sand pile analogue (b) higher-order con-

struction, along with a sand pile analogue (c) Kerr microscopy of an experimental

realization of a high order pattern from a strip with an in-plane axis of anisotropy

(sample courtesy: B. Viala, CEA-LETI).

4.2 Domains in nanostructures with out-of-plane magnetiza-

tion

Although to a lesser extent than for in-plane magnetization, domains of

perpendicularly-magnetized material are influenced by lateral finite-size effects.

This is obviously the case for weak-stripe domains, as a significant part of

magnetization lies in-the-plane, calling for effects similar to those highlighted

in the previous paragraph. Strong stripe domains may also be influenced in a

flat nanostructure. Two arguments may be put forward: the local demagnetizing

field is smaller close to an edge, with respect to the core of a nanostructure; this

would favor uniform magnetization close to an edge, and thus local alignement

of the stripes along this edge. Another argument is that a stripe with opposite

magnetization is ’missing’ beyond the border, removing a stabilizing effect on the

stripe at the border; this would call for orienting stripes perpendicular to the

border to better compensate surface charges. It seems that in some experiments

the stripes display a tendency to align either parallel or perpendicular to the
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Figure II.12 – The vortex state. Magnetization states of a disk of permalloy

with diameter 100 nm and thickness 10 nm. The background color codes the y
component of magnetization. Arrows stand for the magnetization vector. (a) near

single-domain and (b) vortex states. These (and later) simulations were done using

the freeware OOMMF[81, 82].

border, in the same sample[79]. For thick films it seems that alignement of the

stripes parallel to the border is favored[80].

4.3 The critical single-domain size

In the above we considered domains in large samples. We now examine down to

which size domains may be expected in nanostructures, called the critical single-

domain size.

Let us consider a rather compact nanostructure, i.e. with all three demagne-
tizing coefficient N close to 1/3, and lateral size `. If uniformly magnetized, its

total energy is ESD = NKd `3. We now have to discuss separately the cases of hard
versus soft magnetic materials.

In hard magnetic materials domain walls are narrow and with an areal energy

density γW determined from materials properties. If split in two domains to close

its magnetic flux, the energy of such a nanostructure is ED ≈ εdNKd`3 + γW`2 with
εD expressing the residual dipolar energy remaining despite the flux closure. γW =

4
√AKu in the case of uniaxial anisotropy. Equating ESD and ED yields the critical

single-domain size `SD = γW/[N(1 − εd)Kd] below which the single-domain state
is expected, while above which splitting into two or more domains is expected.

`SD ≈ γW/NKd ≈ √AKu/Kd. `SD is of the order of one hundred nanometers for
permanent magnet materials.

In soft magnetic materials a flux-closure state often takes the form of a col-

lective magnetization distribution, implying a gradual rotation of magnetization

as seen in Van den Berg’s constructions (sec.4.1). The relevant quantities are then

exchange and dipolar energy, so that the critical single-domain size is expected

to scale with the dipolar exchange length Δd. Numerical simulation provides the
numerical factor, `SD ≈ 7Δd for cubes and `SD ≈ 4Δd for spheres[6, p.156].
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Estimating the critical single domain dimensions for non-compact nanos-

tructures (i.e. with lengths quite different along the three directions) requires
specific models. An important case is the transition from single-domain to the

vortex state in a disk of diameter w and thickness t (Figure II.12). ESD ≈ NKdtw2

with N ≈ t/w the in-plane demagnetizing coefficient. As a crude estimate the
(lower bound for the) energy ED of the flux-closure state is the exchange plus

dipolar energy of the core, around 10Δ2
d
tKd. Equating both we find the scaling lawwt ≈ 10Δ2

d
for the critical dimensions. Numerical simulation provides an excellent

agreement with the scaling law, however refines the numerics: wt ≈ 20Δ2
d
[83].

4.4 Near-single-domain

Figure II.13 – Illustration of the short

range of interactions in 2D. Demagnetizing

field in a strip magnetized uniformly across

the width, of width 200 nm and thickness

2.5 nm

In the previous paragraph we dis-

cussed the scaling laws for dimen-

sions, below which a nanostructure

does not display domains. Here

we notice that such nanostructures

are often not perfectly uniformly-

magnetized. We discuss the origins

and the consequences of this effect.

When deriving the theory of de-

magnetization coefficients in sec.4.3,

we noticed that the self-consistence

of the hypothesis of uniform mag-

netization may be satisfied only in

the case of homogenous internal field. In turn, this may be achieved only in

ellipsoids, infinite cylinders with elliptical cross-section, and slabs with infinite

lateral dimensions. Many samples do not display such shapes, in particular flat

structures made by combining deposition and lithography. Figure II.13 shows

the demagnetizing field in a flat strip assumed magnetized uniformly across

its width. The field is highly non-homogeneous: it is very intense close to

the edges, mathematically going towards Ms/2; and very weak in the center,
below its average value −NMsII.6. This is a practical example of the statement
found in sec.2.1, about the short range of dipolar fields for a two-dimensional

nanostructure.

Due to the high value of demagnetizing field close to the edges, magnetization

undergoes a strong torque and the system cannot remain uniformly magnetized,

at least in the absence of an external field. The resulting areas are called end

domains, with a tendency of magnetization to turn parallel to the edge to reduce

edges charges and instead spread them in the volume. Although no real domains

develop, this is a reminiscence of the Van den Berg construction. In the case

of elongated elements, so-called ’S’ and ’C’ states arise, named after the shape

II.6
The analytical derivation of which is proposed in problem sec.3.
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Figure II.14 – Near-single-domain states in rectangles of dimensions

2 00× 10010 nm and squares of dimensions 1 00× 10010 nm. (a) S state (b) C state
(c) flower state (d) leaf state.

of the flux lines, and reflecting the almost independence of end domain when

sufficiently apart one from another (Figure II.14a-b).

Non-uniform magnetization configurations may persist down to very small

size, especially close to corners where demagnetizing fields diverge in the

mathematical limit[84, 85]. This leads to the phenomenon of configurational

anisotropy, described both analytically and computationnally[86–88]: certain

directions for the average moment have an energy lower than others, arising

from the orientation-dependent decrease of dipolar energy (at the expense of

exchange) made possible by the non-uniformity of magnetization. This effect

adds up to the quadratic demagnetizing tensor, and may display symmetries

forbidden by the latter, in relation with the shape of the element: order 3, 4, 5

etc (Figure II.14c-d).

4.5 Domain walls in strips and wires

We consider nanostructures elongated in one direction, which we will call wires

when the sample dimensions are similar along the other two directions, and

strips when one of them is much smaller than the other. The latter is the case

for most samples made by lithography, while the former is the case for samples

made e.g. by electrodeposition in cylindrical pores[89]. We restrict the discussion
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(b)

(c)

(a)

Figure II.15 – Head-to-head domain walls in strips. (a) Schematic of head-to-

head and tail-to-tail walls. (b) simulated and MFM transverse wall (c) simulated

and MFM vortex wall. (top views).

to those strips and wires where no magnetocrystalline anisotropy is present, so

that shape anisotropy forces magnetization to lie along the axis. Domain walls

may be found in long objects, called head-to-head or tail-to-tail depending on the

orientation of magnetization in the two segments (Figure II.15a).

Micromagnetic simulation predicts the existence of two main types of domain

walls for strips: either the vortex wall (VW) or the transverse wall (TW) (Fig-

ure II.15b-c). The lowest energy is for the latter for tw < 61Δ2
d
, while the vortex do-

main wall prevails at large thickness or width. Although this scaling law is similar

to that of the single-domain-versus-vortex phase diagram for disks however with

a larger coefficient (sec.4.3), its origin is slightly different. It was indeed noticed

that most of the energy in both the VW and TW are of dipolar origin[90], resulting

from charges of the head-to-head or tail-to-tail. These charges are spread over

the entire volume of the domain wall. Using integration of H2
d
over space to

estimate dipolar energy, and noticing that the surface of the TW is roughly twice

as large as that of the VW and the decay with height of Hd is roughly w, the tw
scaling law is again derived. Although both transverse and vortex domain walls

are observed experimentally (Figure II.15b-c), the range of metastability is large so

that it is not possible to derive an experimental energetic phase diagram. TWmay

for instance be prepared far in the metastability area through preparation with a

magnetic field transverse to the strip. For the largest thickness and especially

width TW turn asymmetric (ATW) through a second-order transition.

Summary

Domains and domain walls in nanostructures. The ground state of large nanos-

tructure may involve domain walls to achieve a non-uniform distribution of mag-

netization, so as to decrease dipolar energy. This takes the form of flux-closure
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domains described by the van den Berg construction for in-plane magnetization,

and stripes and bubbles for out-of-plane magnetization. When the system size is

decreased these are not more favorable, and the ground state is an essentially-

uniform-magnetized state. Domain walls may exist in strips, with an inner structure

dependent on the material parameters and geometry of the strip cross-section.

5 An overview of characteristic quantities

In the course of this chapter we met many characteristic quantities: lengths,

energies, dimensionless ratios etc. Here we make a short summary of them.

5.1 Energy scales

• Kd = (1/2)µ0M2

s
is called the dipolar constant. It is a measure of themaximum

density of dipolar energy that can arise in a volume, i.e. for demagnetizing
coefficient N = 1.

• 4
√AKu is the energy of a Bloch wall per unit area.

5.2 Length scales

• Exchange and anisotropy. In a situation where only magnetic exchange

and anisotropy compete, the two relevant quantities in energy are A and
Ku, expressed respectively in J/m and J/m3

. The typical case is that of a

Bloch domain wall (sec.5). The resulting length scale is Δu = √A/Ku. We
call Δu the anisotropy exchange length[12] or Bloch parameter, a name
often found in the literature. The latter is more often used, however the

former makes more sense, see the note below. Notice that Δu is sometimes
called the Bloch wall width, which however brings some confusion as several

definitions may be used for this, see sec.5.

• Exchange and dipolar. When exchange and dipolar energy compete,

the two quantities at play are A and Kd. This is the case in the vortex
core (sec.3.4). The resulting length scale is Δd = √A/Kd = √2A/µ0M2

s
, which

we call dipolar exchange length[6] or exchange length as more often found

in the literature, see again the note below.

• Exchange, anisotropy and dipolar. `SD ≈
√AKu/Kd is the critical domain

size of a compact nanostructure made of a quite hard magnetic material. It

emerges out of the comparison of two energies, one per unit volume, the

other one per unit surface. It is relevant in other situations, such as hard

stripe domains for films with perpendicular magnetocrystalline anisotropy.

Notice that `SD may be written Δd√Q or ΔuQ.
• Other cases. In more complex situations other length scales may arise,

taking into account an applied magnetic field, dimensionless quantities
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such as the ratio of geometric features etc. For example the pinning of

a domain wall on a defect gives rise to the length scale
√A/µ0MsH for a

soft magnetic material, or

√
2A/√Kuµ0MsH for a material with significant

magnetic anisotropy.

Exchange lengths. The name exchange length has historical grounds

however is not well suited. Indeed exchange plays an equal role in

both Δu and Δd. It is more relevant to name Δu the anisotropy exchange
length, and Δd the dipolar exchange length. We use the subscripts u (for
uniaxial) and d (for dipolar) to account for this, as suggested in Hubert’s

book[6]. It would also be consistent to call ΔH = √A/µ0MsH the field
exchange length.

5.3 Dimensionless ratios

• A quantity of interest in the quality factor Q = Ku/Kd, which describes the
competition between uniaxial anisotropy and dipolar energy. Q largely
determines the occurrence and type of domains in thin films with an out-of-

plane magnetocrystalline anisotropy.

Summary

An overview of characteristic quantities. The distribution of magnetization often

results from the balance of the various energies involved in a system. Dimensional

analysis can be used to show that characteristic quantities emerge out of this

competition: length, energy, dimensionless ratios. Consideration of these quantities

allow to predict qualitatively the behavior in a given situation, and its scaling law

with material parameters and system dimensions, without having to perform any

calculation.



Problems for Chapter II

Problem 1: Self-testing

1. How does the ordering temperature vary with the thickness t of an ultrathin
film?

2. Why is themagneticmoment per atom changed at the surface of amagnetic

film?

3. What can you say about the direction of magnetization for a thin film made

of a soft magnetic material

4. Describe what a Bloch wall and a Néel wall are, and when one or the other

occurs.

5. What is a cross-tie wall? In which case and why does it occurs?

6. What is the critical single-domain size? What is the order of magnitude of

this length for a sphere made of a soft magnetic material?

7. Describe the principle and hypothesis of the geometrical van den Berg

construction.

8. Comment on the range of magnetostatic interactions in a bulk magnetic

material, and in a thin film.

Problem 2: Short questions

1. Consider a cubic material with first-order magnetocrystalline anisotropy

constant K1,cub much weaker than Kd, in the form of a thin film with surface
normal (001).

• Express the resulting in-plane magnetic anisotropy E(θ) with θ the in-
plane angle of magnetization with an easy axis, assuming that magne-

tization lies purely in-the-plane. Comment.

• Find exactly the easy directions of magnetization.

For both items consider both cases of positive and negative K1,cub, and
comment.

91
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2. Explain shortly what is in general the trend for the Curie temperature and

magnetic anisotropy in ultra-thin films.

3. Figure II.16 displays the top view of flat elements made of a soft ferromag-

neticmaterial, with a lateral size very large compared to anymagnetic length

scale. Explain shortly the physical reasons and the resulting rules allowing

one to predict the distribution of magnetization in such elements. For each

of the elements, sketch the local direction of magnetization, and possibly

the locus of domain walls.

Figure II.16 – Distributions of magnetization

4. Draw a sketch of the expected contrast in the magnetic microscopy of do-

main walls. Consider four types of domain walls: perpendicular anisotropy

with Bloch wall; in-plane anisotropy with Bloch wall and Néel caps, 180
◦
Néel

wall and 90
◦
Néel wall. Consider four techniques: XMCD-PEEM, Lorentz,

MFM, polar Kerr. The sketches may be presented as an array for clarity.

5. Explain why a Bloch wall with Néel caps in a film with perpendicular mag-

netization has only one internal degree of freedom, whereas Bloch walls in

films with in-plane magnetization have two.

6. Derive with simple arguments the scaling law W ∼ t1/2 for the period
of strong stripe domains (p.80). This may be done in the limit W � t
with suitable approximations to estimate the order of magnitude of the

magnetostatic and domain wall energies involved for one period W of the
pattern, and minimizing the proper quantity considering W as a variational
parameter.

7. The Co layer displayed in Figure I.11b has in-plane magnetization, with an

in-plane easy axis of magnetization. Sketch its direction based on the

observation of the domain walls. Comment on the type of these domain

walls.

Problem 3: Demagnetizing field in a strip

x

z

θ

M

Figure II.17 – Geometry. The left side

of the strip considered. The edge hold-

ing the magnetic charges is highlighted

as a bold line. Magnetization is alongx, while a translation invariance is as-
sumed along y.

Here we derive the analytical formula

for the in-plane demagnetizing field in a

flat and infinitely-long strip magnetized

in-the-plane, a case that was shortly dis-
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cussed in sec.4.4. We call t and w its thick-
ness and width, respectively. We assume

magnetization to be homogeneous and

along the transverse direction.

3.1. Deriving the field

Express the stray field Hd arising from
a line holding the magnetic charge per

unit length λ. As a first step, we consider

only Hd,x(x), the x component of the de-
magnetizing field calculated at mid-height of the strip, arising from the charges

on one of its edges. Write an integral form for this function. Show that it reads,

upon integration:

Hd,x(x) = Ms
2

[
1− 2

π
arctan

(
2x
t
)]

(II.13)

3.2. Numerical evaluation and plotting

Derive the limits and first derivative for Eq.(II.13) for x → 0 and x → ∞,
and comment. Provide a hand-drawn qualitative plot of this function. Without

performing more calculation, discuss how it compares in magnitude with the z
average over the thickness, i.e. 〈Hd,x,z〉 (x)? What is the (x, z) average of the latter
over the entire cross-section of the strip?

Problem 4: Three-dimensional micromagnetics: a

magnetic nanotube

In this problem we consider some aspects of micromagnetics in the 3D space,

with issues of curvature and topology. We illustrate this with a nanotube with

length L (along z), inner radius ρ1 and outer radius ρ2. We describe magnetization
with cylindrical coordinates (Figure II.18). In cylindrical coordinates, the volume

density of exchange energy reads:

Eex = A
[(

∂mρ

∂z
)2

+

(
∂mθ

∂z
)2

+

(
∂mz
∂z
)2

+

(
∂mρ

∂ρ

)2

+

(
∂mθ

∂ρ

)2

+

(
∂mz
∂ρ

)2

+
1

ρ2
(m2

θ +m2

ρ

)]
(II.14)

4.1. Uniform magnetization

As a first approximation, we consider that magnetization is uniform in the

tube, i.e. mx,my andmz are uniform.
• For L = ∞, give the demagnetizing coefficients of the tube along x, y, z.
Describe the state of lowest energy.

• Describe the state (or states) of lowest energy for ρ2 = 2ρ1 and L� ρ1.
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Figure II.18 –Magnetic nanotube described with cylindrical coordinates

4.2. Cylindrical symmetry

We now consider situations with, simultaneously, a cylindrical and transla-

tional symmetry for magnetization, meaning thatmρ,mθ andmz are uniform. We
name radial, azimuthal and longitudinal the directions along ρ̂, θ̂ and ẑ.

• Draw a sketch of magnetization for each of these situations: mρ ≡ 1; mθ ≡ 1

andmz ≡ 1.

• Write Eq.(II.14) in the present case, and discuss the formula. What is the

reason of the remaining terms in the equation? Calculate the exchange

energy Eex per unit length of the tube in the three cases. Using a linear

expansion, propose a simplified expression in the case of thin-walled tubes,

i.e. for Δρ = ρ2 − ρ1 � ρ2. Discuss what are the states of highest and lowest

energy in the case of a soft magnetic material, within the cases: mρ ≡ 1,

mθ ≡ 1 andmz ≡ 1.

• Let us now consider a material with magnetocrystalline anisotropy with

volume density Emc = −Km2

θ, with K > 0. If Emc only is considered, describe
the state of lowest energy. Calculate the magnetocrystalline energy Emc per

unit length of the tube. When both Eex and Emc are considered and thus
Eex and Emc compete, discuss the state of lowest energy. We will restrict

the discussion to the case of thin-walled tubes. Discuss the specific length

arising from this competition. If the case where azimuthal magnetization is

favored, discuss what happens in the limit of a magnetic wire (ρ1 → 0).

4.3. Domain walls

We consider a domain wall centered at z = 0, separating two semi-infinite

domains extending towards −∞ and +∞, respectively. We restrict the cas to
cylindrical symmetry, and consider a thin-walled tube with radius ρ and thick-

ness t = ρ2 − ρ1. We will make an analogy between the nanotube and a thin film,
or more precisely a strip of width 2πρ and thickness t, which would be obtained
by unrolling the tube.

4.3.A. LONGITUDINAL MAGNETIZATION

We assume that mz ≡ ±1 are the ground state domains. In analogy with a
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strip, how would you name a domain wall between the two domains? Make an

unrolled sketch of the domain walls which may arise.

This system is subject to a longitudinal magnetic field H, i.e. applied along ẑ.
With your knowledge of the domain wall dynamics in a strip, describe qualitatively

what is expected for the wall velocity as a function of strength of the applied field.

4.3.B. AZIMUTHAL MAGNETIZATION

We assume thatmθ ≡ ±1 are the ground state domains. In analogy with a thin
film, what are the two kinds of domain walls that may arise? Make an unrolled

sketch. Can you move such domain walls with an external magnetic field? Now,

consider that the ferromagnetic tube surrounds a non-magnetic metallic core.

What is the consequence of passing an electric current through andmetallic core?

4.3.C. RADIAL MAGNETIZATION

We assume that mρ ≡ ±1 are the ground state domains. Such a state was
not predicted in sec.5.3. In analogy with a thin film, how would you name

such domains? Discuss how you could think of favoring this orientation of

magnetization, based on your knowledge of magnetic material science. What are

the two kinds of domain walls that may arise? Make an unrolled sketch.

Problem 5: The Dzyaloshinskii-Moriya interaction

and chiral magnetic structures

In this problem we consider the consequences of a peculiar exchange inter-

action, the Dzyaloshinskii-Moriya interaction (DMI), occurring only at atomic sites

lacking space inversion symmetry. This may occur either in bulk materials with a

suitable lattice structure, or at the interface between two materials.

5.1. Defining and handling the Dzyaloshinskii-Moriya interac-

tion

The DMI interaction may be expressed the following way, for one bound (Fig-

ure II.19):

εDMI = −dij · (Ŝi × Ŝj) (II.15)

In this equation Ŝi and Ŝj are unit vectors standing for atomic moments at sitesi and j, εDMI is expressed in Joules, and dij is called the DMI vector. This vector is
specific to the bound considered, and when arising from an interface it may be

written:

dij = dij(n× r̂ij). (II.16)

r̂ij is the unit vector from atomic site i to atomic site j, and n is the outward normal
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to the magnetic surface, here taken along x̂. Angles are such that a positive value
around ŷ means counter-clock-wise rotation on Figure II.19.

1. When in competition with conventional exchange εex = −Jij(Ŝi · Ŝj), discuss
qualitatively the consequence of the DMI interaction (no calculation re-

quired). What is the sign of dij consistent with the gradual change of angle
displayed on Figure II.19?

2. For the sake of simplicity we consider a square lattice of atomic sites in the

(y, z) plane, with nearest-neighbor distance a along the y and z directions,
and DMI restricted to these four nearest neighbors. dij is thus identical in
strength for all bounds. dij will be written d in the following. When the
change of angle between sites i and j is small, expand the vector product
of Eq.(II.15) using the operator rij ·∇. Show that, normalized to one atomic
site, the DMI energy may be written:

εDMI = da
[
ŷ ·
(
m× ∂m

∂z
)
− ẑ ·

(
m× ∂m

∂y
)]

(II.17)

3. We introduce the DMI energy per unit surface ES
DMI
= εDMI/a2, and its normal-

ization per unit volume EV
DMI
= εDMI/(a2t) when dealing with an ultrathin film

of thickness t. Define the surface and volume quantities DS and DV, such as
for example:

EV
DMI
= DV

[
ŷ ·
(
m× ∂m

∂z
)
− ẑ ·

(
m× ∂m

∂y
)]

(II.18)

Discuss their units. Express again Eq.(II.17), in terms of energy per unit

volume. Simplify this expression when a variation of magnetization is

expected only along z. Write it first in terms of components of m, then in
terms of the angle ϕ, showing that EDMI = DV dϕ/dz.

5.2. Micromagnetic consequences of the Dzyaloshinskii-Moriya

interaction

We consider the combination of exchange, DMI and anisotropy energies,

expressed in energy per unit volume:

E(r) = A
(
dϕ

dz
)2

+ DV
(
dϕ

dz
)
+ K sin2 ϕ (II.19)

i j

a

φ

y z

n

dij

x

Figure II.19 – Notations for the Dzyaloshinskii-Moriya interaction
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Note that the variation of magnetization drawn on Figure II.19 is the geometry for

a Néel wall.

1. Discuss the units of A, DV and K . Which are the various characteristic length
scales that may arise due to the competition of these terms? Which are the

various domain wall energies that may arise?

2. Searching for the equilibrium shape of a domain wall we consider the

functional energy:

E[m] =

∫
+∞

−∞
E
[
m(r),

dm

dz (r)
]
dz (II.20)

It is reminded that this energy is minimized under the Euler-Lagrange

condition:

∂E
∂ϕ
=
d

dz
 ∂E
∂
(
dϕ
dz
)
 (II.21)

Wewill search for a solution with extended boundary conditions ϕ(−∞) = επ
and ϕ(+∞) = 0, with ε = ±1. The sign of ε is related to the chirality of the
wall, which you will comment a priori. Apply the Euler-Lagrange equation

and comment on the influence of DV on the shape of the domain wall.
Remembering that the energy per unit surface of a conventional domain

wall is 4
√AK , show that the energy of the domain wall when the DMI

interaction is present is: σW = 4
√AK − επDV. Discuss.

3. We define the quantity Dcyc = 4
√AK/π. What is the unit of this quantity?

Express Dcyc in terms of the anisotropy exchange length. For D > Dcyc
we have σW < 0, which means that domain walls may be nucleated

spontaneously, forming a periodic cycloid. Considering the energy per unit

volume of the cycloid, calculate its period L in the simple case where the
magnetic anisotropy K may be neglected, so that dϕ/dz is a constant. We
introduce the variable ξ = 2A/|DV| to express L. How could ξ be named?

4. In the above we considered that the domain wall is of Néel type, as depicted

in Figure II.19. However, it is known that a Néel wall implies a cost of dipolar

energy, compared to a Bloch wall. A domain wall may be written, in a

general fashion: my = sinΦ sinϕ, mz = cosΦ sinϕ and mx = cosϕ. Draw
a sketch for such a general wall. Which are the values of Φ for a Néel or a
Bloch wall? Express again EDMI for an arbitrary value of cosΦ. Derive again
the energy of a domain wall, as a function of Φ. If we neglect the dipolar
cost of a Néel wall compared to a Bloch wall, what is the most favorable wall

in the presence of the DMI?

5. We write KN the extra cost per unit volume of dipolar energy of the Néel
wall, compared to the Bloch wall. Using the arguments of Néel to estimate

this dipolar cost of Néel walls based on the demagnetizing coefficient of a

cylinder, express the extra cost for an arbitrary angleΦ. Then, remembering
the equipartition of exchange and anisotropy energy occurring in walls of
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second order, and assuming that the profile of the wall is still determined

by exchange and anisotropy solely, show that the energy of a general wall

may be written: σW = 2ΔKN cos2Φ − επDV cosΦ, where Δ is the anisotropy
exchange length. Discuss the type and energy of a wall occurring naturally

depending on the value of DV. We introduce the critical parameter |Dc| =
4ΔKN/π.

6. Finally, we consider an external fieldH applied along ŷ. Again assuming that
the profile of the domain wall is still determined by A and K , calculate σZ,
the contribution of the Zeeman energy to the wall. Show that the effect of

the DMI is similar to an applied field HDMI applied along y, and provide the
formula for this equivalent field. Determine the type and energy of the wall

as a function of H.



Chapter III

Magnetization reversal

Overview

The previous two chapters have led to the understanding of the arrangement of

magnetization in low-dimension system. We are now ready in this chapter to address

processes of magnetization reversal, i.e. the effect of an applied magnetic field
on the overall direction and local arrangement of magnetization. We restrict the

discussion to quasistatic effects, including thermally-assisted processes. We leave

aside precessional magnetization dynamics, to be examined in chap.IV, as well as

magnetization processes induced by spin-polarized currents, to be covered in the

last chapter. Systems will be discussed from the smallest to the largest, meaning

single-domain to potentially with non-uniform magnetization, so with increasing

complexity. The former are more prone for analytical modeling, while the latter are

tackled with approximations and dedicated modeling.

99
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1 Macrospins - The case of uniform magnetization

The determination of the energy landscape is crucial for describing hysteretic

phenomena, however difficult or impossible in practice in extended systems

due to the large number of degrees of freedom. Only simple problems may

be tackled analytically. Coherent rotation of magnetization is one of the oldest

and a useful starting point for more complex theories. It describes systems

with essentially uniform magnetization, which in practice applies reasonably

only to those systems with dimensions smaller than all magnetic length scales

(nanoparticles).

1.1 The Stoner-Wohlfarth model

The model of coherent rotation was proposed by Stoner and Wohlfarth in 1948

to describe the angular dependence of magnetization reversal[91, 92, the latter

being a reprint of the former], and developed in parallel by Néel to describe

thermally-activated processes. Many developments were made later, including

clever graphical interpretations[93] and generalization to three dimensions[94].

The model is based on the hypothesis of uniformmagnetization, reducing the

problem to solely one or two angular degrees of freedom. This hypothesis is

very restrictive and may be reasonably applicable only to very small particles.

For large systems it is not suitable as is, with for example an experimental

coercivity being much smaller than the one predicted. Nevertheless, the concept

introduced for uniform magnetization bears some generality (e.g. exponents,
angular dependence), and may be applied to extended systems with some care,

e.g. to describe nucleation volumes (sec.3).
We consider a systemwith volume V , total uniaxial anisotropy energyK = KuV ,

magnetic momentM = MsV . Its magnetic energy reads:
E = K sin2 θ − µ0MH cos(θ − θH). (III.1)

θ refers to the direction of magnetization with respect to the lattice, θ = 0 being

the initial state along an easy axis. θH is the angle between the applied field and
this initial direction of magnetization. For simplicity here we consider only the

case θH = π, thus a positive H is applied to promote magnetization reversal. We
use dimensionless variables e = E/K, Ha = 2Ku/µ0Ms and h = H/Ha. Ha is called the
anisotropy field. The equilibrium positions are determined by solving de/dθ = 0.
The stability of these positions (stable or unstable) are determined by the sign of

d
2e/dθ2 (respectively positive or negative).
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Table III.1 – Stoner-Wohlfarth model calculations. Summary of the anisotropy

of energy and its derivatives, for the external field applied along an easy axis [θH =
π, see Eq.(III.1)].

e de/dθ d
2e/dθ2

sin
2 θ + 2h cos θ 2 sin θ(cos θ − h) 4 cos

2 θ − 2h cos θ − 2

θ+ = 0 0 2(1− h)
θ− = π 0 2(1 + h)

θb = arccos(h) 0 −2(1− h2)

The anisotropy field. Whereas dimensional analysis shows that

K/µ0Ms it the characteristic quantity emerging when anisotropy and
Zeeman energies compete, the general definition of the anisotropy field

is Ha = −∂Emc/∂µ0M, and Ha implicitly refers to its magnitude along the
easy axis of magnetization. It reads 2K/µ0Ms for the case of uniaxial
anisotropy of second order, however have different expressions for

other cases.

The formulas for e, its angular derivatives, and their values for extrema of
e, are gathered in Table III.1; h = 1 is clearly a threshold value. Thanks to

the symmetry of the case considered, we may assume θ ∈ [0 − π] without

loss of generality. While θ+ = 0 and θ− = π are always equilibrium positions,

for h < 1 an extra equilibrium position θb exists. In that case θ± equilibrium

positions are stable, while θb is an unstable position, associated with an energy

barrier preventing magnetization reversal from the metastable θ+ towards the

most stable θ− (Figure III.1a). The energy barrier is:

Δe = (1− h)2 (III.2)

ΔE = K(1− H/Ha)2 (III.3)

For h > 1 only θ+ and θ− remain as equilibrium positions, respectively unstable

and stable. An abrupt switching of magnetization occurs for hsw = 1, as revealed
consistently by many signatures: Δe → 0, θb → θ+ before vanishing, and

θ+ changes from a stable to an unstable equilibrium position. The resulting

hysteresis loop is square, with remanence exactly one, and coercive field equaling

the anisotropy field.
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Figure III.1 – (a) Energetics and hysteresis loops for themacrospin. Energy pro-

files for increasing values of applied field, of a macrospin with uniaxial anisotropy

of second order. Profile are drawn for both easy axis (θH = 180
◦
, top) and

intermediate angle (θH = 110
◦
, bottom). For the latter, the series of profiles are

slightly shifted vertically for clarity. The initial (resp. final) minima are marked with

blue (resp. red) dots. (b) Hysteresis loops for various angles of applied field θH.
Equal values for angles symmetric with respect to 45

◦
are clearly evidenced.
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• The vocabulary of magnetization reversal. Several words may

be found to describe magnetization reversal, such as reversal,

switching, coercivity. Their meaning is slightly different, and their

use should depend on the case considered. Switching, used in

the above, refers to the abrupt change of direction of magnetiza-

tion, reflecting the existence of two distinct minima in an energy

landscape. It is a notion best suited to small systems in nanomag-

netism, such a single-domain, characterized by a limited number

of degrees of freedom. Coercivity is defined asM ·H = 0, referring

to states in which a system is half-way reversed. It is best suited

as a statistical value to characterize large systems, such as for

material science, where individual degrees of freedom (e.g. single-
domain grains) cannot be distinguished. Notice that no special

event may occur around coercivity for single particle, e.g. when
the field is applied closer to the hard than easy axis (Figure III.1b).

Reversal has the broader meaning of magnetization changing of

orientation along a given direction, generally that of an applied

field. The microscopic origin of the reversal may be diverse, such

as switching for a nanoparticule, domain wall motion, continuous

rotation of magnetization. Coercivity characterizes a half-way

reversed system.

• Critical exponents for energy barriers. In most cases, even

idealized, ΔE is not a polynomial with h and an expansion is used:
ΔE ∼ (1 − h)α. α = 1.5 in many cases, such as whenever the field
is applied in a direction which is not an axis of symmetry for a

macrospin, or for the one-dimensional model of a domain-wall

motion hindered by local defects (sec.4).

The calculation of the switching field may be generalized to an arbitrary value

of θH. Although the calculation is somewhat tedious, the result is simple:

hsw(θH) = 1(
sin

2/3 θH + cos2/3 θH
)3/2 (III.4)

The angular variation of the switching field is plotted in both polar and cartesian

coordinates in Figure III.2. The former is known as the Stoner-Wohlfarth astroid
III.1
,

although the plot and associated geometrical interpretations were proposed only

later by Slonczewski[93]. The resulting hysteresis loops are displayed in Fig-

ure III.1b. They evolve from perfectly square for the external field applied exactly

along the easy axis direction (θH = 0◦), to fully reversible with no remanence nor
coercivity for the field applied exactly along a hard axis direction (θH = 90◦).
III.1
The mathematical name for this curve
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Figure III.2 – Stoner-Wohlfarth switching . (a) Polar and (b) cartesian plots of

the switching field hsw and coercive field hc as a function of the angle θH of applied
field. The former is known as the Stoner-Wohlfarth astroid.

Limitations of the Stoner-Wohlfarth model. In the framework of the

model of coherent rotation, the maximum switching field equals the

anisotropy field (1) and is reached for θH ≡ 0[π/2], while the minimum

switching field is 1/2 and is reached for θH ≡ π/4[π/4]. We will see

in sec.3 that in most systems the model of coherent rotation is not

relevant, and coercivity may be much smaller than the anisotropy field.

Fourfold symmetry of the astroid. It is at first sight surprising that the

Stoner-Wohlfarth astroid has a fourfold symmetry, while the anisotropy

of energy is twofold (uniaxial). The reason is linked with the above

discussion about the meaning of switching and coercive fields, in the

sense that the switching field is only one signature of magnetization

reversal. While hsw has the same value for two angles symmetric with
respect to π/4, the magnitude of the jump is larger close to the easy

axis, compared to close to the hard axis. This magnitude in terms

of m · h ranges from 2 along the easy axis, to zero in the limit of

the hard axis. The angular variation of coercivity, another signature

of magnetization reversal, displays the expected twofold symmetry:

hc(θH) = 1

2
| sin(2θH)| (Figure III.2).

1.2 Dynamic coercivity: effects of temperature and waiting

time

In the previous section we considered that a switching event occurs when the

associated energy barrier vanishes; this is a zero-temperature view. At finite
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Figure III.3 – Experimental variation of coercive field with temperature in a

low-dimensional system[95]. The fit follows Eq.(III.5)

temperature thermal energy may help overcome an energy barrier of finite

height, an effect which we address here.

The effect of thermal energy is often described with a Boltzmann law: the

probability to overcome a barrier ΔE is exp(−ΔE/kBT ) during a time characteristic
of magnetization dynamics, a so-called attempt time τ0. It follows that the

probability p of not having switched obeys dp/dt = −p[exp(−ΔE/kBT )]/τ0, and
thus p(t) = p0 exp (−t/τm) with τm = τ0 exp(ΔE/kBT ). chap.IV provides some ground
for an order of magnitude for most magnetic systems: τ0 ' 10

−10
s.

Attempt time. The meaning of the attempt time τ0 is the typical

time involved in magnetization dynamics. 1/τ0 is called the attempt

frequency.

In the framework of the Stoner-Wohlfarth model, ΔE follows Eq.(III.3). Let us
express this effect the other way round: for a duration of observation τ (e.g.
for a measuring technique requiring this averaging time), the field for which the

probability for magnetization switching reaches 50%, which by definition is the

coercive field, may be expressed as:

Hc(T ) = Hc(0K)
[
1−
√kBT

K
ln(τ/τ0)

]
(III.5)

While this equation may be applied to various cases, in the framework of the

Stoner-Wohlfarth model we have Hc(0K) = Ha and K = KV . Figure III.3 shows an
experimental example of an Hc(T ) plot, along with a fit with Eq.(III.5). Notice that
when α 6= 2 this law is modified.

Effects of temperature versus waiting time. The logarithmic function

varies extremely slowly, so that while variations of temperature have a

direct impact on the coercivity, changes of time scales must be of orders

of magnitude to have a similar impact.
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• Extrapolating coercive field at zero temperature. Hc(T ) is a
function decreasing monotonously with temperature. Notice that

the variation is ever sharper close to zero temperature, with a

diverging derivative. This highlights that a measurement at a

somewhat low temperature to estimate the limiting value Hc(0)
may not be adequate, yielding an underestimation of its value.

Applying a scaling law of Hc(T ) versus √T over a range of accessi-
ble low temperatures, is more suitable.

• Approximations. Eq.(III.5) neglects the thermal variation of mag-

netization and of anisotropy coefficients, which may be readily

taken into account in a mean field approach by feeding a priori
known Ms(T ) and K (T ) curves. Another annoying effect is devia-
tions from the idealized Stoner-Wohlfarth case, responsible for

an energy barrier lower than KV . The discrepancy is likely to
be temperature-dependent, so that the latter effect cannot be

corrected a priori.

Eq.(III.5) shows that there exists a temperature at which coercivity vanishes.

It is called the blocking temperature TB, as below this temperature the total
moment of the system does not fluctuate under the time of observation; it is

the blocked state. Above TB the moment fluctuates spontaneously, so that the
average moment vector is zero; this is the superparamagnetic regime, studied in

more detail in the next section.

From Eq.(III.5) TB is defined as:
K = kBTB ln

(
τ

τ0

)
(III.6)

Notice that the value of TB is not unique; it depends on the time scale it is defined:
the shorter the time scale, the higher the blocking temperature. For τ ≈ 1 s one

finds ln(τ/τ0) ≈ 25, so that the above law is often found writtenK ≈ 25kBTB in the
literature. In data storage the retention time should be years, which is of the order

of 10
10
s, so that the numerical factor is then close to 50. As the energy barrier

is proportional to the volume for coherent rotation, the larger the anisotropy,

the smaller the diameter up to which the particle is superparamagnetic. Critical

diameters of superparamagnetism for various materials are in the range from a

few to a few tens of nanometers, as summarized in Table I.2.



III.1. MACROSPINS - THE CASE OF UNIFORM MAGNETIZATION 107

1.3 The superparamagnetic regime

Here we analyze the behavior under applied field of a superparamagnetic system

described by a macrospin of moment M = MsV . We make use of reduced
moments mi to refer to the component of the macrospin along a given direc-
tion (m = 1).
We first consider the case of no magnetic anisotropy. Let us use the partition

function of statistical physics defined as E: Z = ∑ exp(−βEi) from the probability
of occupancy of states i with energy Ei; i sums over all possible states. As E

contains the term −µ0MzH (H being applied along the z direction), the average
moment along the direction z of the applied field may be computed like:

〈mz〉 = 1

Mβµ0Z
∂Z
∂H . (III.7)

Integration on all possible orientations of magnetization in space reads:

Z =
∫ π

0

sin θ exp (βµ0MH cos θ) dθ (III.8)

Simple algebra then yields 〈mz〉 = L(x) with x = βµ0MH and L(x) = coth x − 1/x is
the Langevin function (Figure III.4b).

The situation is different in the case of magnetic anisotropy. A textbook case

is a system with a large uniaxial anisotropy (K� kBT ), and magnetic field applied
along the easy axis. In that case only rare events drive magnetization away from

the easy axis and lead to switching its direction. We may thus consider that the

system is essentially either in the up or in the down state at most times. An

approximate partition function then simply reads Z = 2 cosh x and 〈mz〉 = B1/2(x).
B1/2 = tanh is the Brillouin 1/2 function also describing the susceptibility of an

Ising spin S = 1/2, except that here the spin moment is replaced by the macrospin
momentM. The proof for this handwaving argument, and the transition from the

Brillouin 1/2 to the Langevin functionmay be found elsewhere[96]. This highlights

the origin of the name superparamagnetism: its phenomenology is similar to that

of paramagnetism, however implyingmacrospins instead of individual electron or

atomic spins.

The analysis of the m(H) curve of a macrospin in the superparamagnetic
regime informs one about the magnitude of its magnetic moment, as saturation

is reached for x ≈ 1. Similar to the case of paramagnetism, m(H/T ) curves are
expected to superimpose, which is a check of the validity of the method in a given

context. Instead of fitting the entire curve the analysis is often restricted to the

zero-field susceptibility χ. A quantitative analysis requires however the careful

choice of the model best fitted to describe a situation, as to first order expansion

L(x) ∼ x/3 while B1/2(x) ∼ x. It shall be noted that anisotropy may be neglected
only when kBT becomes comparable with K. Using the Langevin model in a case

when it is the Brillouin 1/2 that is relevant, yields to a threefold overestimation
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Figure III.4 – (a) Langevin L and Brillouin one-half B1/2 functions. (b) The

three-steps zero-field-cooled / field-cooled procedure for an assembly of particles.

On the energy landscapes the red (resp. blue) dots illustrate magnetization

parallel (resp. antiparallel) to the applied field. The green shade illustrates the

states accessible through thermal excitations.

of the moment. For a reliable analysis 1/χ is often plotted versus T , expecting
a linear variation whose slope is inversely proportional to the magnitude of the

magnetic moment. In the usual case of the study of an assemble of particle, a

shift of the 1/χ line towards positive (resp. negative) field values is indicative of

ferromagnetic (resp. antiferromagnetic) coupling between the particles, similarly

to the Curie-Weiss law.

Rule of thumb. B1/2 tends to saturate for x ≈ 1. As kB ≈ 1.38 ×
10
−23
m

2
· kg · s

−2
and µB ≈ 9.27 × 10

−24
A ·m

2
, as a rule of thumb we

shall remember that an induction µ0H = 1 T is required for polarizing a
magnetic moment of 1µB at T = 1K. At room temperature 300 T would

be required to significantly polarize atomic moments; this is the order

of magnitude of the conceptual molecular field describing magnetic

ordering with sizable Curie temperature.

Beware of the model used. For the anisotropic case we considered

here only the textbook case of the magnetic field applied along the

direction of easy axis. In the case of an assembly of anisotropic particles

with an isotropic distribution of easy axis, the resulting magnetization

curve lies very close to a Langevin function. In real cases distributions

may arise (of particle moment and anisotropy). Introducing more

parameters for describing superparamagnetic curves will always yield

a better fit from the mathematical sense, however care should be

taken about the independence of the effect of the various parameters

introduced, and also on the reliability of the fitting if the values of

parameters depend on faint features of the magnetization curve.
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Figure III.4b illustrates a routine procedure for characterizing the transition

from the blocked to the superparamagnetic state of an assembly of particles: the

zero-field-cool / field-cooled curves. The first step is driving the system down in

temperature through the superparamagnetic transition. This is done under zero

applied field, so that at any temperature the average moment is zero. The second

step consists in raising the temperature back to above the superparamagnetic

transition (zero-field-cooled part). This is done under an applied field of moderate

magnitude, i.e. much smaller than the anisotropy field so that the two energy
minima still exist and are simply imbalanced in energy. When thermal fluctuations

become sufficient the energy barrier may be crossed and the population of the

two minima obeys the Boltzmann law, yielding an average moment scaling like

1/T , see above theB functions. In the third step the temperature is lowered again,
while keeping the moderate applied field (field-cooled curve). Upon crossing the

superparamagnetic temperature the system freezes with magnetization mostly

aligned along the field, yielding a high average moment. On these curves the

splitting between steps 2 and 3 allows one to identify the blocking temperature.

When there exists a distribution of blocking temperatures in an assembly, it is

reasonable to define the blocking temperature as half-way up the field-cooled

magnetization curve (Figure III.4b).

Parameters influencing FC/ZFC curves. The exact shape of FC/ZFC

depends on the strength of the applied field, especially the value and

field for the maximum of the ZFC part. So does it also in relation

with magnetic anisotropy, its strength and angular distributions, inter-

particles interactions etc[97, 98]. Thus, some care needs to be taken

when interpreting the values extracted from ZFC-FC curves.

Superparamagnetic or non-magnetic? There is often an argument

how to differentiate or even define the superparamagnetic regime from

the loss of magnetic order. From a theoretical perspective a particlemay

be called magnetically-ordered when the magnetic correlation length

exceeds the size of a particle. For compact nanoparticles of diameter

at least 5 − 10 nm this should happen not far below the bulk order-

ing temperature, which may be very large compared to the blocking

temperature. From a practical point of view the susceptibility should

scale like M/T in the superparamagnetic regime, and sharply drop to
mat/T above the ordering temperature, with mat the value of individual
moments at the atomic scale.
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1.4 What do we learn from dynamic coercivity and superpara-

magnetism?

In the previous three subsections we considered the magnetization reversal of

macrospins with increasing thermal energy, neglected in the Stoner-Wohlfarth

model (probed by low-temperature measurements), up to the superparamag-

netic regime. To schematize, we may learn a different information from exper-

iments performed in each regime. Here is a possible way to combine these

informations. This of course is an idealized procedure, and should be applied and

output taken with care. Pitfalls may come from non-perfectly uniform magneti-

zation, non-uniaxial anisotropy, distributions of various types in the assemblies

measured, inter-particle interactions etc.

1. The superparamagnetic regime is primarily sensitive to the moment M of

the particle. Thus, if Ms is known and a suitable model for fitting is chosen,
then information about the particle volume V may be extracted.

2. Second, the thermal decay of coercivity and the blocking tempera-

ture (sec.1.2) involves K = KV , so that based on the value of V estimated
previously, information about the volume density of anisotropy K may be
extracted.

3. Third, the extrapolation of coercivity down to low temperature provides

some information about the intrinsic process of magnetization switching.

For a truly single-domain nanometer-sized particle the Stoner-Wohlfarth

model should apply and coercivity reflect the volume density of anisotropy,

to be compared to the value estimated in the second step. Deviations may

reflect discrepancies in the analysis, or a magnetization process deviating

from coherent rotation as will be discussed in the next section.

1.5 Ensembles of grains

Some features of the magnetization reversal of isolated single-domain grains

were presented in the previous paragraphs. Some consequences may be drawn

for systems consisting of assemblies of individual grains, neglecting inter-grain

interactions of any type. Of easy access and modeling are the remanence

mr and the internal energy at saturation EK , derived from the area above the

remagnetizing curve. Both depend on the dimensionality of the distribution of

easy axis. Assuming uniaxial magnetic anisotropy with constant K for simplicity,
we consider three common cases:

• The polycrystalline case, i.e. with an isotropic distribution of easy axis in
space. This may correspond to particles diluted in a matrix, or a poly-

cristalline bulk material. We then find: m3D

r = 1/2 and E3DK = 2K/3.
• The polytextured case. By this we mean a shared axis with no distribution

for the hard axis, while the easy axis is evenly distributed in the plane

perpendicular to this axis. This would be the case of Fe(110) grains grown
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on a surface, the easy axis lying along the in-plane [001] direction. When the

field is applied in-the-plane we find: m2D

r
= 2/π ≈ 0.64 and E2D

K
= K/2.

• The textured case, where all grains share the same direction of easy axis.

This would be the case for oriented powders, or e.g. (0001) hcp Co grains
on a surface. When the field is applied along this axis we find the case of a

single grain: m1D

r
= 1 and E1D

K
= 0.

Remanence, texture and interactions. The comparison of experimen-

tal findings with the expected figure for mr is often used as an indi-
cation for interactions, positive (e.g. through direct exchange between
neighboring grains) if the experimental value exceeds the expectation,

negative it it lies below. Systems with coupled grains will be considered

in more detail in the following section.

Concerning anisotropy, notice that in the first two cases the measure of EK
provides an indication of K . In all cases, the sum of areas above the loops for all
three main axes equals 2K .

Summary

Macrospins. The model of uniform magnetization (also called macrospins) in

magnetization reversal is interesting because it can be solved analytically, however it

must be handled with care in large systems, in which non-uniform magnetization

distributions may play the leading role in magnetization reversal. Among the

quantities predicted is the switching field, which is reduced at elevated temperature

due to thermal excitations. Sufficiently-small magnetic grains may even switch

spontaneously above a given temperature, called the blocking temperature. This

phenomenon is called superparamagnetism.

2 Magnetization reversal in nanostructures

When the dimensions of a system reach or go beyond some magnetic length

scale, the hypothesis of uniform magnetization is in most cases no more reliable.

Internal degrees of freedom show up and change the properties of magnetization

switching, as they already do for the static configurations as seen in the previous

chapter. Below we progressively release the constraint of uniformmagnetization,

going from the simplest to the more complex nanostructures.

2.1 Near single domains

It was stressed in sec.I.4.3 that the demagnetizing field may be homogenous and

collinear to magnetization only in uniformly-magnetized bodies such as cylinders,
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ellipsoids and slabs. Thus for all other shapes spatially-dependent torques

act on magnetization, making the hypothesis of strictly uniform magnetization

not possible self-consistently. This gives rise to the occurrence of near-single-

domain configurations and configurational anisotropy, discussed in sec.II.4.4.

This additional contribution to the angular variation of magnetic anisotropy,

composed of magnetostatic and exchange energy, induces deviations from the

Stoner-Wohlfarthmodel and Slonczewski’s astroid and rounding ofmagnetization

curves (non-full remanence). In a small system with no uniaxial anisotropy of

neither shape nor magnetocrystalline origin, configurational anisotropy deter-

mines easy directions of anisotropy and leads to a finite coercivity, whereas zero

coercivity would result frommacrospin considerations. Micromagnetic simulation

or advanced micromagnetic modeling are required to quantify these effects[86].

When the particle size increases, it may happen that while the zero-field

magnetization configuration is single-domain or near-single-domain, magnetiza-

tion reversal involves a static (under constant negative field) or dynamic state

with significant deviations from uniform magnetization. This has early been

suspected as one of the possible reasons of the often-found discrepancy between

the large values of coercive field predicted by the Stoner-Wohlfarth model, and

experiments. This discrepancy is now referred to as the Brown paradox. For the

moment we still restrict the discussion to finite-size systems and let aside the case

of extended bodies in whichmagnetization reversal is often triggered at structural

inhomogeneities and defects, to be discussed in sec.3.1.

The first model for non-uniform magnetization switching in systems with

nevertheless small dimensions was proposed concomitantly by Brown[99] and

Frei et al. [100]III.2. This new mode is called curling, and consists of a radius-
dependent orthoradial (azimuthal) tilting of magnetization around the initial

direction of magnetization, itself being along an easy and high-symmetry axis.

This breaks the initial symmetry of the system and gives rise to some vorticity or

curling (Figure III.5). This reversal mode is still highly symmetric and described by

one single linear functional degree of freedom. For this reason we will call it a

collective magnetization switching.

A scaling law for the range of relevance of curling is easily derived, in a way

similar to the one describing the critical size for single domain (sec.4.3) however

now implying an applied field. We consider a system with uniaxial anisotropy

of second order Ku, demagnetizing coefficients Nu along the easy axis and N⊥
in the transverse directions. R is the half dimension across the hard direction,
e.g. the radius for a cylinder. Under the constraint of uniform magnetization the
average density of magnetic energy varies quadratically with the magnetization

angle, from KdNu along the easy axis to Ku + KdN⊥ in the hard plane. We assumeKu + Kd(N⊥ − Nu) > 0, defining the easy axis along u. Compared to coherent

rotation, the configuration shown in Figure III.5may allow to decrease significantly

III.2
The former manuscript came first by a few month, while the latter has a more detailed

presentation and set the notations for later use by the community
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the magnetostatic energy KdN⊥ of the transient state in the hard plane. This is
achieved at the cost of exchange energy with density of the order of A(π/2R)2.
Translating this into fields, it is therefore expected that the switching field behaves

like

Hcurl = Ha −Ms
(
Nu − k

ρ2

)
(III.9)

where k is a dimensionless number and ρ = RΔd . Detailed calculations[100] confirm
this law and provide a figure for k, for example 3.393 for the infinite cylinder and
4.367 for the sphere. In the calculation exchange and magnetostatic anisotropy

are estimated, both contributing to k. As the switching field for coherent rotation
is Ha−Ms(Nu−N⊥), the crossover from coherent rotation for low radius to curling
for large radius occurs at ρc =

√k/N⊥.
The dipolar exchange length appears again as the relevant length scale,

as the problem is that of the competition between exchange stiffness

and magnetostatic energy.

Curling in SI and cgs. Erroneous numerical factors for k in Eq.(III.9)
are sometimes found in the literature, due to the conversion to SI units

from the cgs-Gauss system used in the initial calculations by Frei[100].

Following the latter the ρ−2 dependance in Eq.(III.9) is often written S−2
with S = R/R0, R0 = √A/M2

s in cgs-Gauss. Correct formulas in SI units

may be found in section 3.5.4 of Hubert’s book[6].

Let us take simple examples. For a cylinder of soft magnetic material Ha = 0,Nu = 0 and N⊥ = 1/2. Coherent rotation allows magnetization switching at field

Hcr = Ms/2, curling may start for Hcurl = kMs(Δd/R)2. Thus coherent rotation will
be the expected switching mechanism for R smaller than the critical radius Rc =√
2kΔd = 2.6Δd, and curling will be the expectedmechanism for larger dimensions.

If magnetocrystalline anisotropy is non-zero these fields become Hcr = Ha + Ms/2
and Hcurl = Ha+kMs(Δd/R)2, thus leaving the critical radius unchanged. For a sphere
we have Hcr = Ha and Hcurl = Ha − Ms [1/3− k(Δd/R)2], with a critical radius Rc =√
3kΔd = 3.619Δd.
Calculations for curling can be extended as a function of the angle θH of

applied field with respect of the main axis of the sample[101, 102]. Expressing the

source of magnetic anisotropy as originating from longitudinal Nu and transverseN⊥ demagnetizing coefficients, one finds:
Hcurl(θH) = −Ms (Nu − k/ρ2)(N⊥ − k/ρ2)√

(Nu − k/ρ2)2 sin2 θH + (N⊥ − k/ρ2)2 cos2 θH (III.10)
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Figure III.5 – (a) Schematics for the curling mechanism in a cylinder, from

uniformly-magnetized (left) to full curling (right). (b) Simulation of curling close

to the end of a cylinder with a square cross-section. On each surface the color

codes a transverse component of magnetization.

Nucleation or full switching?. Analytical calculations for curlingmodes

require the linearization of equations. Thus what is in principle pre-

dicted is the nucleation field in the sense of linear theory, i.e. the onset
of deviation from uniform magnetization (this should not be confused

with nucleation in the sense of the switching of a small volume of

material). This does not warranty that full reversal will follow. Numerical

solving shows that it coincides with the coercive field for direction of the

applied field close to the easy axis, while for angles close to the hard

axis the coercive field is distinct and larger than Hn.

We learned above that the (minimum) critical size for a collective non-uniform

mode of magnetization switching to occur is about a few times the dipolar

exchange length. Still increasing the dimensions of a system, up to what point do

collective modes survive in practice? Indeed we have seen in chapter chap.II that

nanostructures of dimensions much larger than the dipolar exchange length may

remain essentially uniformly magnetized in their remanent state, for instance for

large magnetocrystalline anisotropy, or for flat elements even made of a rather

soft magnetic material. In these cases, even if collective modes may lower the

energy barrier compared to coherent reversal, the energy barrier is still of the

same order of magnitude as the anisotropy energy. In such cases a more efficient

way to reverse magnetization is incoherent modes, i.e. the local nucleation of a
small reversed volume that then quickly expands and propagates the reversal

to the entire system. The energy involved is then only that contained in the

domain wall separating the already reversed from the yet unreversed domains.

Such modes are of particular relevance for systems with high anisotropy such

as materials for permanent magnets, strongly non-uniform demagnetizing field

such as for very flat elements, or with defects locally lowering the nucleation

field. An unambiguous proof that systems near-single-domain in the remanent

state may be reversed incoherently is a variation of coercivity much faster than

predicted by Eq.(III.5), indicative that the volume involved in nucleation is much

smaller than the volume of the entire system. We will come back to this when

describing extended systems (sec.3).
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Figure III.6 – Curling model for magnetization reversal in the textbook case

of an infinitely-long cylinder made of a soft magnetic material: dimensionless

switching field (left) and coercive field (right) versus the angle of applied field

θH with respect to the easy axis of magnetization. Curves for various values
ρ = R/Δd are shown (see figures on the plot), along with those of coherent
rotation (Figure III.2b). The reversal mechanism to be expected is the one with the

lowest value. Thus below the critical value ρc ≈ 2.8 the mechanism for switching

is curling close to the easy axis direction, while it remains coherent rotation close

to the hard axis.

Let us give an example of incoherent magnetization reversal. In the previous

chapter we saw that extended and flat elements with in-plane magnetization

may curl their magnetization close to edges, where demagnetizing field are the

largest
III.3
(Figure II.13). It is obviously these areas that are more prone to reversal,

triggering an incoherent process for magnetization reversal (Figure III.7). Suitable

approximations enable simple models to be developed. For instance it was

noticed the switching field of elongated and flat elements scales likeMs(t/w)[103],
with width w, thickness t, magnetization Ms . This can be understood as the end
domain of the S- or C-state being the locus of nucleation, with an energy barrier

to overcome scaling like the lateral demagnetizing coefficient of the dot, itself to

first order scaling with t/w: Hc ≈ Hc,0 + 0.25Mst/w. In this formula Hc,0 relates to
the pinning of the thin-film material itself. Thus, engineering the geometry of the

end of a stripe is a mean to control the nucleation field, to a certain extent. For

example, nucleation occurs at a smaller applied field for tapered ends than for

III.3
Now that we have seen curling states, let us note that these edge states are sometimes called

edge curling walls[6]
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Figure III.7 – Incoherent magnetization reversal in a strip of Permalloy with

width 100 nm and thickness 10 nm, through growth of a nucleation volume, fol-
lowed by propagation of a domain wall.(a) Magnetization states at equilibrium

(b) Snapshots under a fixed field, of magnitude larger than the nucleation field.

The value of applied induction field is indicated above each map. The simulations

were run with damping parameter α = 1 to get simple magnetization configura-

tions, however in real samples α is much smaller than 1. This will be discussed in
chap.IV.

arrow-shaped ends[104].

The above scaling law for the nucleation field in strips[103] was derived

experimentally at room temperature. Both thermal activation and edge

roughness[103, 105] contribute to reduce the nucleation, compared to

an ideal system as considered in most micromagnetic simulations.

Summary

In this section we have seen that upon increasing size, the mode of magnetization

switching is expected to evolve from coherent, to non-coherent however collective,

to finally incoherent (nucleation-propagation).

2.2 Large elements of soft magnetic material

When further increasing its dimensions, a system may contain domain walls to

close its flux and thus reduce magnetostatic energy. This is a flux-closure state.
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We restrict the discussion here to flat element made of soft magnetic material,

for which the number and locus of the domain walls are expected to result

from energy minimization. The Van den Berg solutions described in sec.4.1 were

extended by Bryant and Suhl[106, 107] when an external field is applied. The

model is that of a perfectly soft material with infinite susceptibility, leading to

the perfect expulsion of magnetic field (applied plus dipolar), with divM = 0 and

zero edge charges. This leads to the description of magnetization as M = curl A

where A is a vector potential; magnetization lines happen to be lines of isovalues

for A. Unfortunately there is no more a geometrical construction for describing
the magnetization state, and the solution shall only be obtained from examining

boundary conditions at the lateral edges of the element. Figure III.8a shows an

example of the evolution of such flux-closure elements under magnetic field.

Later, more elaborate (numerical) theories were proposed, lifting the con-

straint of full expulsion of magnetic field[108–110], and considering edge charges.

This in principle allows one to fully describe the magnetization curve M(H) of a
soft element of large dimensions. Some features of magnetization curves may

however be discussed without the need to resolve in detail the magnetization

configuration at any field step. We noticed in sec.1.3 that the Zeeman term

contributes in principle to a magnetic enthalpy, not an internal energy. In this

thermodynamic framework and under quasistatic variation of the applied field,

the work provided to the system upon rising the external field is stored as internal

energy:

Eint(H =∞)− Eint(H = 0) = µ0MsV
∫

1

0

H · dm (III.11)

Thus, assuming that a near single-domain state is reached at high field, and

neglecting the energy of the remanent state, the area above the magnetization

curve equals the demagnetizing energy in the direction considered NKd. Contrary
to the case of amacrospin, and due to the non-uniformity of demagnetizing fields,

theM(H) curve is not a straight line with slope 1/N, but a concave curve with initial
susceptibility larger than 1/N (Figure III.8c).

Eq.(III.11) holds for infinitely-soft materials only, where the system always

resides in a state of minimum energy, with no hysteresis. In the

case of hysteresis, implying jumps between local minima of different

energy, part of the work provided is lost for the magnetic system and

contributes to heating.

The above considerations remain valid in the presence of anisotropy of a

microscopic energy such as magnetocrystalline, as long as hysteresis is negligible.

In that case both demagnetization energy and anisotropy energy contribute to the

area above the curve.

We also neglected the energy of the remanent state that may contain domain

walls and vortices, which we know have a finite energy (sec.I.5). As the energy

of a vortex is constant and that of a domain wall is linear with its length, their
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Figure III.8 – Hysteresis loop of flux-closure systems. (a) Numerical solution of

a magnetization process in an extended soft element with a flux-closure and one

domain wall[106] (b) Hysteresis loop of a soft element of moderate size, for which

some hysteresis remains around nucleation / annihilation events of vortices and

domain walls (c) Hysteresis loop of a soft element of extended dimensions.

contribution to the average energy (normalized with its area ∼ L2) is indeed
negligible for large size L of a nanostructure. When the dipolar exchange

length is not negligible before L then a sizeable change of moment occurs upon
nucleation and annihilation of vortices and domain walls, often associated with

hysteresis (Figure III.8b). Besides these objects contribute to a non-zero remanent

energy, reducing the area above the magnetization curve[111]. Its measurement is

an elegant way to estimate the energy of a micromagnetic state with flux closure,

a quantity that cannot be measured directly.

2.3 Motion of domain walls in one-dimensional elements

A domain wall is a two-dimensional object in a bulk system, and takes asymp-

totically the form of a one-dimensional object in an extended thin film with de-

creasing thickness. Still decreasing dimensionality, a domain wall may be viewed

as a point (a zero-dimensional object) in an essentially one-dimensional system,

either a strip or a wire, if the details of its internal structure are ignored (sec.II.4.5).

This situation provides the simple example of domain-wall motion, to start with

a qualitative feeling. Various models suited to describe magnetization reversal in

extended systems in the presence of pinning will be described in sec.3.

Over the past fifteen years studies have been thriving on the motion of

domain walls in strips made by lithography. The motion has been set under

the stimulus of either magnetic field or spin-polarized current. As this motion

implies precessional dynamics, we will study it in detail in chap.IV. Here we

provide a quasistatic description of domain wall motion under a quasistatic

applied magnetic field.

A domain wall in a one-dimensional system may be modeled as an object

moving in a one-dimensional energy landscape, whose examples of microscopic

basis will be discussed in the next paragraph. Local minima in the energy
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landscape imply trapping or pinning of domain walls. A magnetic field applied in

the direction of one of the domains on either side of the wall, applies a pressure

on the wall. We call propagation field the magnetic field for which the pressure

becomes larger than the pinning force, setting the domain wall in motion. In a

quasistatic picture, the domain wall will move until a large enough pinning site is

reached.

The microscopic origin for an energy landscape and thus for pinning, may

come from the material or from the edges of the track. The former may

result from defects such as grains and grain boundaries, affecting exchange,

anisotropy and/or magnetization. The latter may come from spatial variations of

the strip/wire width or thickness (roughness). Of special focus is edge roughness

induced by lithography, either residual[112] or done intentionally[113]. As a general

rule the strength of this pinning increases with decreasing strip width, as the

source of pinning arises just once at either edge, while the Zeeman pressure

scales with the strip width. When roughness is large one may better describe

it as a modulation of strip width, either a constriction (local decrease of cross-

section) or protrusion (local increase of cross-section). As the total energy of a

wall increases with the cross-section of the one-dimensional object, a constriction

is expected to act as a potential well, whereas a protrusion is expected to act as

an energy barrier.

Investigating domain wall motion in a strip requires a means to create single

domain walls. A common way to create domain walls in strips with in-plane

magnetization is to design curbed areas along the wires, then apply and remove a

large magnetic field along the radius of the curb (Figure III.9a); this was proposed

independently by two groups[114, 115]. Upon application of a field larger than the

lateral demagnetizing field of the strip, the magnetization becomes essentially

oriented along the applied field. When the field is reduced the magnetization

progressively rotates back along the local direction of the strip, to decrease

magnetostatic energy. The sense of rotation is opposite on either side of the curb,

resulting in a head-to-head or tail-to-tail domain wall at remanence. Another com-

mon way to create a domain wall is to connect a pad at an end of the strip, whose

existing domain walls may serve as a reservoir for injection[116, 117] (Figure III.9b).

For a material with in-plane magnetization it is often designed to have a flux-

closure pattern to permanently host one or more domain walls. For a material

with out-of-plane magnetization the pad is designed with large dimensions, so

that the probability to include defects promoting nucleation is high. Yet another

way is to pattern a crossedmetallic strip run by an electric current to create a local

Œrsted field, locally reversing magnetization[118]. This route is again effective for

both in-plane and out-of-plane magnetization.
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ba Applied field

Figure III.9 – (a) Strategies for the controlled nucleation of domain walls in

strips with in-plane magnetization. Creation of domain walls in a curbed strip

upon application (top) and removal (bottom) of a magnetic field along the radius

of the curbs. This scheme is valid only for in-plane magnetization (b) Injection of a

domain wall in a strip from a reservoir. This scheme is valid both for in-plane (as

shown) and out-of-plane magnetization.

2.4 Magnetization processes inside domain walls and vortices

Domain walls define the boundary of domains, and as such have a dimensionality

lower by one unit to that of domains. Let us now consider domain walls and

vortices as structures in themselves, whose magnetic texture is described by

internal degrees of freedom. For example, the core of a magnetic vortex or that

of a Bloch domain wall in a film with in-plane magnetization may be pointing

either up or down. A Bloch domain wall has also a second degree of freedom: its

chirality, or in other words the transverse orientation of its top versus bottom

Néel caps (sec.II.3). A Néel wall also has one degree of freedom: its chirality

(related to the sign of the transverse magnetization in the core of the domain

wall), clockwise or anticlockwise. Can one switch the magnetization underlying

these degrees of freedom, in a way similar to the switching of magnetization in a

strip or wire?

Although theories had been developed long ago for switching such degrees

of freedom[6, 119], their practical realization in extended thin films is problematic,

as applied fields induce domain wall and vortex motion. It has only been more

recently that such processes could be evidenced when vortices and domain walls

are trapped in flux-closure dots, so that their location is not affected by external

fields.

Let us first consider the edge curling domain found at the edge of a flat

and extended element. Applying a magnetic field along the edge may allow

to switch the direction of this edge domain, through the propagation of a

localized volume of magnetization pointed perpendicular to the edge[120–122].

The core of magnetic vortex is also a one-dimensional object. Its switching with

a magnetic field applied along the core was demonstrated for vortices trapped

at the center of micron-sized circular dots[123]. This magnetization process

requires the nucleation and propagation of a zero-dimensional object, the Bloch

point[75]. Topological constraints (the boundary conditions) indeed require that

the magnitude of magnetization be zero at some location during the course
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of magnetization reversal. Notice that this process is poorly reproduced by

micromagnetic simulations[124], because its characteristic length scale is close to

the atomic size. Yet another one-dimensional magnetization texture is the Néel

caps found at surfaces of a Bloch domain wall, as discussed in sec.II.3.1. Switching

of Néel caps is also possible, by application of a magnetic field in the direction

transverse to the wall, i.e. parallel to the magnetization in the Néel cap[125]. This
process does not require a Bloch point, however is achieved through the motion

of a surface vortex.

Summary

Magnetization reversal in nanostructures. As soon as the size of a system is larger

than a few times the smallest characteristic length scale, magnetization reversal

occurs in a non-uniform fashion, even if at rest the system is mostly uniformly-

magnetized. Reversal modes may include curling for small systems with a uniaxial

symmetry, and other collective modes e.g. for large structures made of a soft
magentic material with in-plane magnetization.

3 Magnetization reversal in extended systems

We consider now systems with macroscopic lateral dimensions, with in mind

mostly the case of thin films. It is then impractical to describe all domains and

domain walls in detail. Magnetization switching must be described by statistical

means, and understood on the basis of effective models. We introduce the

concepts of nucleation and propagation, and magnetic aftereffects, which are

standard concepts in magnetic materials science.

3.1 Description of the question at stake

In sec.1 we introduced the Stoner-Wohlfarth model, describing magnetization

reversal of single-domain systems. The model predicts an angular dependence of

the coercive field scaling with the anisotropy field, be it of magnetocrystalline or

shape origin. Experiments show that in most cases the coercive field of extended

systems is much lower than these predictions, sometimes by one to two orders

of magnitude. This discrepancy is known as the Brown paradox, and was an early

issue of micromagnetism.

In the previous section (sec.2) we discussed that releasing the constraint of

uniformmagnetization reduces the energy along the pathways for magnetization

reversal. This is analogous to the consideration of static cases in chap.II, for

which releasing this constraint allows in most cases to reduce the energy of a

system at rest. Non-uniform reversal modes are then favored, with a coercive

field smaller than predicted by the Stoner-Wohlfarth model. In both cases, static
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configurations and reversal pathways, most examples of non-uniform configu-

rations discussed so far resulted from the magnetic anisotropy, size and overall

shape of the system. Such ingredients and their related consequences are named

intrinsic. Figure III.7 provides an example of intrinsic nucleation of magnetization

reversal. However a real system has nearly always defects in its structure: grains

and grain boundaries, inclusion of other phases, variations of composition or

crystal ordering, roughness (of special relevance for low-dimensional systems)
III.4
.

Such ingredients and their consequences on magnetization reversal are named

extrinsic.

In practice both intrinsic and extrinsic phenomena affect magnetization re-

versal. However the number of defects increases with system size, so that in

general the larger the systems, the more extrinsic effects tend to determine

magnetization reversal. Depending on the phenomena involved the reversal

may take several forms such as continuous rotation of magnetization inside

domains, successive switching of individual grains or small nuclei, propagation

of domain walls etc. Due to the large number of degrees of freedom involved

in extended systems, these phenomena may be described only macroscopically

and phenomenologically. It is the role of models to extract signatures of the

underlying phenomena, from experimental statistical or averaged quantities. It

is necessary to identify these microscopic phenomena in order to control them

and tailor the macroscopic properties of a material.

In the following we first examine simple examples of pinning models, to

highlight the physics of extrinsic magnetization processes. Then we discuss

the effect of temperature, helping to overcome energy barriers against pinning

or nucleation, and introduce the concepts of activation volumes and magnetic

aftereffects. Finally we come back to practical cases of models, applied to

deriving energy barriers and laws for aftereffects. We will show how the various

types of physics at play at the microscopic scale may be inferred through their

temperature- or waiting time dependence.

3.2 Zero-temperature views

Some of the earliest models for extrinsic coercivity are based on the propagation

of a domain wall in a heterogeneousmedium. In 1932 Bloch provided a calculation

for the width and the energy of a domain wall[50]. Becker had already stressed

that inhomogeneities of strain must induce variations of the strength and direc-

tion of the easy axis of magnetization due to magnetostriction, and the same

year as Bloch he proposed that this is a source of pinning for domain walls[126].

In 1937 Kondorski quantified this effect, making a link between coercivity and

a one-dimensional energy landscape arising from strain[127]. This is known as

the Becker or the Kondorski model. Here we keep from this early work only

III.4
We briefly mentioned it and took it into account phenomenologically in the previous section,

in the Kondorski model, see sec.2.3
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the simple picture of a one-dimensional energy landscape U(x) (Figure III.10).

We remain at the phenomenological level, so that U(x) may reflect a variety of
situations such as defects affecting anisotropy or exchange, the lateral size of a

system such as width in a strip, diameter in a wire[128], thickness in a film etc.

Important to notice as an approximation is that the domain wall is considered

as pinpoint in this model. The link between the energy landscape and the

propagation field is the focus of problem 4. In short, for an applied field favoring

motion of the domain wall along +x, the field needed to achieve propagation is:
Hp = 1

2µ0Ms
dU

dx (III.12)

The propagation field is thus determined by the steepest rising slope of U(x), as
illustrated on Figure III.10a-b. Let us consider the simple case of a flat landscape

with a local variation. A maximum of U gives rise to an energy barrier. This

hinders the propagation of the domain wall, however does not prevent its going

backwards if the field is reversed (Figure III.10c). To the contrary, a minimum of U

is a potential well into which a domain wall is trapped (Figure III.10d). Once there

it is prevented to move in either direction, unless a field of sufficient magnitude

is applied, a so-called depinning field. In practice one expects a distribution

of local propagation fields, unless the source of defects is well controlled and

reproducible from one place to another. A gaussian distribution of defects is

then expected to induce a propagation increasing logarithmically with the length

of the segment considered[128]

The reading of the Kondorski formula is the following: for propaga-

tion to occur, the increase of internal energy must be compensated

by the energy provided by the operator through the Zeeman term.

The factor 2 accounts for the fact that upon a change of position δx,
a volume with initially down magnetization is converted into an up

domain, associated with a difference of energy 2µ0MsH.

Eq.(III.12) may be extended to the case of an external field applied at an

angle θ with magnetization in the two domains. For a 180◦ domain wall Ms is
simply replaced with Ms cos θ, provided that the magnitude of the applied field
is small compared to the anisotropy field; in other words: the magnetization in

the domains remains essentially fixed along the direction of easy axis. If these

propagation fields control magnetization reversal, then one expects the coercive

field to vary like 1/ cos θ. Notice then the minimum and rather flat variation close

to the easy axis of magnetization. When measured experimentally, this is consid-

ered as a signature of a propagation phenomenon. The cos θmay also be viewed

as related to the susceptibility of the core of the domain wall, making an angle

θ with the applied field. The similarity with the curling model for large system

radius (Figure III.6) is understandable as in this case the orthoradial component

of magnetization, which appears spontaneously to reduce magnetostatic energy,



124 CHAPTER III. MAGNETIZATION REVERSAL

Energy

Energy

Energy

ForceForce

a b

e

Energy
c d

Energy

Figure III.10 – One-dimensional model for domain-wall motion. (a) Energy and

the associated force under zero magnetic field (b) Similar plots with a magnetic

field added (c-d) An energy barrier and an energy well (e) The energy landscape

depicted in b in the presence of thermal energy. The lighter green areas show the

states reachable through thermal excitations, and arrows indicate energy barriers

that may be crossed.

has the same orientation as the core of a domain would have, with susceptibility

proportional to cos θ.

When the scale of the spatial variation of the properties of a material is

comparable or larger than the domain wall width, the Kondorski model may

readily be applied withU(x) ≈ 4
√A(x)K (x) (see sec.I.5), or any other type of formula

for the domain wall energy if applicable. However, when the spatial variation of

a property becomes significant at the scale of a domain wall, then its impact on

the micromagnetic arrangement of the wall must be studied to derive U(x). In
this case x is, e.g., the center of mass of the domain wall. Let us provide an
example, proposed by A. Aharoni[129]. This author considers a uniaxial anisotropy

of second order varying in space K (x) with simple shapes (Figure III.11).
The first case considered is that of a soft inclusion in the material: K = 0 for

|x| ≤ d, and K = K0 elsewhere. This inclusion induces a potential well for the
domain wall, centered at x = 0. In the limit d � Δu the depinning field scales
with Had/Δu (see problem 4). The meaning of this law is straightforward: when
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Figure III.11 – Simple models of defects favoring local nucleation, or the

pinning of domain walls.

the domain wall overlaps the defect no anisotropy energy is paid over a length

d, resulting in a potential well of the order of K0d. If moving by Δu the domain
wall leaves the defect, yielding a gradient of energy scaling with K0d/Δu. The
scaling law is then derived easily from Eq.(III.12). If no domain wall pre-exists,

the defect allows to nucleate one at a field lower than the anisotropy field of the

non-defective phase. As the defect is only a perturbation to the main phase, the

nucleation volume may be viewed as an entity subject to coherent switching. The

angular law for nucleation events is thus expected to show some similarity with

the Stoner-Wohlfarth law, i.e. displaying a maximum for the field applied close
to the easy axis of magnetization. Now consider the limit d � Δu. At the scale
of micromagnetism, it is as if two extended materials exist: one soft, one hard.

Thus, a reversed domain may be created under a low applied field Hn � Ha in the
soft material, like in any extended systemmade of a soft magnetic material. Once

the reversed domain is nucleated, a domain wall will be located at each boundary

with the hard magnetic material, requiring a larger value of applied field to allow

its propagation into the hard phase. Simple arguments considering energies and

length scales as above, show that the propagation field scales with Ha, while the
exact calculation provides: Hp = Ha/4[129, 130].
The second case considered is a linear variation of K (x). The nucleation

or propagation fields may then both be as small as desired, by choosing a

small gradient of energy, in other words a large d. This model was revived
recently by the proposal of the use of grains for hard disk drive media with a

spatially graded anisotropy. These allow to decrease the switching field thanks to

the moderate gradient of energy, while preventing spontaneous magnetization

switching thanks to the height of the energy barrier still related to K0[131].
Angular dependance of coercivity as a probe of the reversal mech-

anism. In the series of examples above we illustrated the concepts of

nucleation and propagation phenomena, used to describe magnetiza-

tion reversal in extended materials. The examination of the angular

variation of coercivity is a mean widely used to determine which is the

phenomenon limiting magnetization reversal. In practice the situation

may be less clear, as there is no strict border between the two phenom-

ena.
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Switching versus coercive fields. Remember that the Stoner-

Wohlfarth model predicts the switching field, which coincides with the

coercive field only for |θ ≤ π/4|. Thus, for the analysis of the angular
variation of magnetization reversal over a large range to determine

whether nucleation or propagation is the best description for magneti-

zation reversal, what needs to bemeasured is the switching field, related

to irreversible events only. One way to do this is apply a negative

field of given magnitude, then measure the resulting magnetization

when back to remanence. This eliminates irrelevant processes from

the measurement, such as the reversible rotation of magnetization in

domains.

3.3 Activation volume

In part sec.1.1 we derived an expression for the energy barrier of a macrospin,

involving the product KV [Eq.(III.3)]. Here we introduce a similar concept for the
phenomenological description of extended systems. Right above we discussed

that in extended systems magnetization reversal may be determined by local

processes such as nucleation, pinning and propagation of domain walls. Thus,

the energy barrier preventing magnetization reversal concerns a volume much

smaller than its total volume V . We shall name it an activation volume and write
it Va. In Eq.(III.3) V shall thus be replaced with Va. Note that the name and writing
nucleation volume Vn is also often used, however it introduces some confusion
with the nucleation and propagation processes, as here we aim at describing any

type of thermally-activated magnetization process. We will thus stick to the name

activation.

Besides, due to extrinsic or intrinsic deviations from the macrospin situation,

switching will occur before H reaches Ha. We shall therefore replace the latter
with a parameter Hc,0, the coercive field in the limit of zero temperature. Also, the
magnetization process may involve energies other than magnetocrystalline, such

as exchange energy. While detailed models take this into account, for the sake

of simplicity we will keep K here. Finally, the power law may be different from
a square law, depending on the situation and thus its modeling. In the end we

generalize Eq.(III.3) with the expression:

ΔE = KVa
(
1− H

Hc,0
)α

(III.13)

where α is an exponent a priori not equal to 2. This expression determines the
time and temperature dependence of magnetization processes as in sec.1.2. A
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similar analysis yields the following relationship:

α ln

[
1− Hc(T )Hc,0

]
= ln

[kBT ln(τ/τ0)KVa
]

(III.14)

Experimentally, plotting ln(1 − H/Hc,0) versus ln T or ln(ln τ ) allows to extract
numbers for α and Va. In practice Va is of the order of δ3 with δ the domain
wall width. The plots and notably the value of α, compared to various models

for magnetization reversal, provide hints for the processes at play in determining

coercivity. It may thus be used to compare various samples and improve their

properties. However several possible biases must be present:

• The anisotropy coefficients are temperature-dependent. Not only the real

K (T ) function should be used in Eq.(III.14), but deriving this equation in
practical cases shows that a correction should also be included along side

in Hc,0.
• The determination of Hc,0 is required for these plots, although measure-
ments can never be performed at strictly zero temperature. As the varia-

tion of coercivity is expected (and confirmed) to increase at low tempera-

ture (Figure III.3), extrapolation from a series of measurements at several

temperatures is required.

• Magnetization processes may vary with temperature, affecting this formula.

For example αmay be obtained as an expansion in models, so that depend-

ing on the temperature range and thus height of the barrier probed the

effective α will vary.

In the next paragraph we give a few simple examples of energy barriers.

The time or temperature dependence of coercivity may be analyzed to

provide indications of the microscopic mechanisms determining mag-

netization reversal.

3.4 Practical cases and models

A one-dimensional energy landscape may be described locally with the following

expansion:

ε = ax + bx2 + cx3 + dx4 + . . . (III.15)

Here dimensionless variables are used. x is the internal degree of freedom
describing the state of the system, and a to d are coefficients depending on the
applied field h. The latter are assumed to display no specific feature such as
singularities, and may thus be expanded linearly at any location. This expression

may describe many situations, where x stands for the location of a domain wall,
direction of magnetization: in a macrospin, a domain wall or nucleation volume.

Besides, it is suitable to describe magnetization reversal as well as moderate
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deviations from uniformmagnetization, such as edge domains, curling structures

etc.

We consider the above expression to describe a system in a local energy

minimum at xm, being metastable however not the lowest energy state. We
aim at determining the field-dependent energy barrier preventing magnetization

switching. Only results are provided here; more details can be found in problem...

A thorough discussion can be found in Ref.[2]. Notice that in general xm depends
on h. To go further it is useful to consider the symmetry around the local energy
minimum. For symmetric and non-symmetric barriers it is always possible to

rewrite Eq.(III.15) in the respective forms:

ε = b̃x̃2 + d̃x̃4 + . . . (III.16)

ε = 2(ãx̃ + c̃x̃3) + . . . (III.17)

x̃ = x−x0 where x0(h) = xm(h) for a symmetric barrier (in general xm is independent
from h), and x0(h) is the locus of the inflexion point on the side of lowest energy
barrier for asymmetric barriers. We end up in purely even and odd functions. In

the even situation an irreversible event is described by d̃ < 0 and b̃ changing sign
from positive to negative (Figure III.12a). The energy barrier is then characterized

by α = 2. This situation boils down to the Landau functional describing phase

transitions, and describes for example magnetization switching of a macrospin

with magnetic field applied exactly along an easy axis of magnetization [Eq.(III.1)];

x is in that case θ, the direction of magnetization. In the odd case an irreversible
event is characterized by arvitrary c̃ and ã changing sign from initially opposite
to the same sign as c̃ (Figure III.12b). The energy barrier is then characterized by
α = 1.5. This situation is that found in the Becker-Kondorski model, where x is
the locus of the domain wall. It is also the case of magnetization switching of a

macrospin with the magnetic field applied away from an easy axis of anisotropy.

With this in mind, it is clear that the odd case is the general situation, while the

even case is an exception. It can be checked mathematically that the transforma-

tion from Eq.(III.15) to Eq.(III.17) is in general always possible, while transformation

to Eq.(III.16) requires special relationships between the coefficients. Thus the

barrier exponent α = 1.5 is the most common case[132]. The above examples are

simplified pictures of nucleation and propagation events in extended systems.

When one tries to describe in more detail or more realistically real nucle-

ation and propagation events, the resulting models may not be described by a

polynomial function such as Eq.(III.15) with barriers canceling around symmetric

or asymmetric energy wells. Laws for energy barriers scaling with H−µ may be
derived in some cases, as detailed below.

An example of such a model for nucleation is the droplet model, topic for

problem 5. This model gets its name from the analogy with supercooled in hy-

drodynamics, where the temperature driving force for vaporization is contained

by the cost of surface energy required to create a bubble of gas in the liquid. Let
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Figure III.12 – Evolution of symmetric and antisymmetric energy barriers up

to switching.

us consider the case of a thin film, initially uniformly magnetized. The picture for

a nucleation bubble consists of a circular domain with reversed magnetization,

separated from the rest of the film by a domain wall. If one considers a bubble

large enough so that the domain wall can be identified clearly, the energy of a

bubble with radius R reads:
E(R) = (2πRΓw − 2πR2µ0MsH) t. (III.18)

The first term is the cost for the domain wall with energy per unit area Γw, while
the second is the gain in Zeeman energy inside the bubble. No bubble (R = 0)

is a local minimum due to the linear cost in wall energy, i.e. it is a metastable
solution, while above a critical radius the quadratic gain in Zeeman energy drives

the expansion of the bubble. These two limiting cases are bounded by an energy

maximum for a critical radius Rc, i.e. spotting an unstable equilibrium situation
whose crossing means nucleation. The associated energy barrier is readily

calculated as ΔE = πΓ2
w
t/(2µ0MsH). The energy barrier does not vanish for any

finite value of applied field, so that no barrier exponent may be defined. The use

of the Arrhenius law yields the temperature dependance of the nucleation field:

Hn(T ) = (π/2)(tΓ2w)/[µ0MskBT ln(τ/τ0)]. As expected the nucleation field decreases
with increasing temperature. Other droplet models can be developed for specific

geometries of finite-size systems, such as at the edge of a finite-size platelet[133]

or strip[134, 135]. Other variational parameters may be used besides the bubble

radius, such as to describe a non-circular shape, however itsmain features remain

qualitatively valid. Note that if in the above we assume Γw ∼ √AK and the wall
width scales like Δu = √A/K , then ΔE ∼ tΔ2

d
K . The later can be understood in

terms of an activation volume, scaling like tΔ2
d
(thickness times the minimum area

of a domain wall).
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Validity of droplet models. Droplet models may be suited for a high

temperature regime, however they fail at low temperature where the

nucleation volume shrinks and thus the picture of a well-defined domain

wall is not valid. A micromagnetic model must instead be used.

As regards propagation, a one-dimensional picturemay not be sufficient to de-

scribe a domain wall. Random-pinning models have been proven experimentally

to be quite successful for describing a two-dimensional energy landscape within

which a domain wall maymeander to find its way at the lowest cost of energy. The

theory weighs the cost in elastic energy (length of the domain wall) with the trend

for the wall to meander through randomly-distributed places of low local energy.

Its derivation is rather complex and makes use of microscopic parameters such

as energy and length scales characterizing the energy landscape, and predicts

that µ = 1/4[136]. At finite temperature and under an applied magnetic field

the domain wall resides essentially at rest for some time in a given configura-

tion, before a burst of thermal energy allows it to cross an energy barrier. It

then propagates over a certain distance before it is again blocked until another

activation event may allow its further progress. This way of propagation with

discrete jumps is called the creep regime and is a common feature of thin films

with a non-negligible distribution of defects or spatial fluctuations of magnetic

anisotropy, and subject to a magnetic field of moderate magnitude. The creep

regime is a possible microscopic mechanism for the long-recognized Barkhausen

jumps measured macroscopically. Investigation of this regime informs us about

the local fluctuations in the film.

Similar to the simplest picture of the Becker-Kondorski model, domain walls

may propagate continuously even through distributed pinning sites if a magnetic

field of sufficient magnitude is applied. This is the so-called flow regime, whose

nature is intrinsically precessional and will thus be described in the next chapter.

Summary

Magnetization reversal in extended systems. Magnetization reversal occurs gen-

erally by the nucleation of one or several small volumes with reversedmagnetization,

followed by propagation of domain walls reversing the remaining of the system.

Both phenomena are thermally-activated, and can be described by models to extract

microscopic information about the material and the defects or geometric features

involved.



Problems for Chapter III

Problem 1: Self-testing

1. What is the difference between the concepts of switching field and coercive

field?

2. In the Stoner-Wohlfarth model, for which directions of the applied magnetic

field the switching field is the smallest? The largest? What are the values?

3. How does the blocking temperature vary with the volume of a magnetic

system?

4. What is the Langevin function, and in which case is it applied to a magnetic

system?

5. What can be learned from the remanence of an assembly of small grains?

6. What is curling in micromagnetism?

7. A magnetic system is nearly uniformly-magnetized at rest. Do this imply

that magnetization reversal proceed following the Stoner-Wohlfarth model?

8. Describe the principle of the Becker-Kondorski model for domain-wall prop-

agation.

9. What is the typical dimensions of a nucleation volume?

10. What is the scaling law describing the height of an energy barrier preventing

reversal, against the applied field? Comment on the critical exponent.

Problem 2: Short questions

1. Give a realistic example of a magnetically-uniaxial system whose coercivity

Hc is larger than its anisotropy field Ha (the latter taking into account both
magnetocristalline and shape anisotropy for uniform magnetization).

2. Look closely at the switching field on the Stoner-Wohlfarth curve for θH =
80
◦
, Figure III.1b. You will notice that dm/dH < 0 at the jump. DIscuss

whether this violates a law of conservation of energy.

3. It was mentioned in chap.I (see p.17) that the remanence of a magnetic
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system is in general positive. Give an example of a magnetic system

displaying a negative remanence (hint: consider a system made of two

sub-systems with different coercivities and moments, and coupled through

an interaction, e.g. of dipolar origin). A negative remanence implies that
the up and down curves forming the hysteresis loop cross each-other.

Discuss whether or not this violates the conservation of energy based on

the argument of the area encompassed inside a hysteresis loop (Figure I.3).

4. We consider a uniformly-magnetized system with uniaxial magneto-

crystalline anisotropy of volume density K , volume V and zero applied field.
The effect of thermal energy is taken into account with the Arrhenius law

for the waiting time to overcome an energy barrier ΔE: τ = τ0 exp ΔE/kBT .kB ≈ 1.38 × 10
−23
S.I. is the Boltzmann constant, and τ0 ≈ 100 ps. Express

the height of the barrier required so that the system has not switched after

a given time τ at a given temperature. To set numbers, we consider a

material with K = 7× 104 J/m3
at the temperature 500K. Provide an estimate

of the minimum length a of the edge of a cube of such material, so that
magnetization has remained stable over three years. For the numerical

estimate, you may use this approximation: ln(10
8
) ≈ 18.

5. Derive the formulas for remanence mr and remagnetization energy EK for
the various cases of texture provided in sec.1.5.

6. Read the seminal paper of Frei about magnetization curling[100] and con-

vert the values of nucleation and coercive fields in the SI system.

7. If a system is mostly uniformly-magnetized at rest (under zero of constant

applied field), does this mean that the process for magnetization reversal is

uniform? Comment.

Problem 3: Herzer model for coercivity in nanocrys-

talline materials

The purpose of this problem is to outline trends for the coercivity of magnetic

materials made of exchange-coupled nanograins. In the entire problem we

assume that magnetostatic energy may be neglected. This is known as Herzer’s

model[137, 138].

3.1. The material

We consider a magnetic material with a uniaxial magnetic anisotropy with

magnitude per unit volume Kg, spontaneous magnetization Ms and exchange
stiffness A. Based on dimensional analysis provide an expression for the domain
wall width and its areal density of energy. We will write Δg =√A/Kg the anisotropy
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d

Δ

Figure III.13 – Effective anisotropy averaged over many grains. The magnitude

of anisotropy is averaged over a large number of grains N3D within a domain wall.

exchange length of the material.

3.2. Averaging anisotropy

We consider grains of typical size d arranged in a polycristalline fashion, i.e.
with a random distribution of easy axis in space. Each grain is coupled with its

neighbors through ferromagnetic exchange.

Let us first consider two neighboring grains only. Based on simple scaling laws,

show for which range of values of d magnetization is expected to be essentially
uniform over the two grains, and on the contrary for which range the direction

of magnetization may vary significantly over the two grains. In the following we

consider the first situation.

Let us write Δ3D the domain wall parameter in such a material, and consider
first a bulk material (three-dimensional). Δ3D is the length over which the direction
of magnetization may not vary significantly in any of the three directions. Thus

the effective anisotropy energy K3D in this volume will be that averaged over the
(large) number of grainsN3D in the volume: K3D = Kg/√N3D (Figure III.13). Based on
the fact that Δ3D ≈ √A/K3D, provide an expression for both Δ3D and K3D. Explain
how one may infer a scaling law for the variation of coercive field with grain size d
in such a material.

3.3. Dimensionality effects

Generalize the above calculation for a two-dimensional (Δ2D and K2D) and one-
dimensional (Δ1D and K1D) material. Comment.
3.4. Numerical evaluation

We consider a material with anisotropy induction µ0Ha = 10mT, spontaneous
magnetization Ms = 8 × 10

5
A/m, exchange stiffness A = 10

−11
J/m and grain size
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d = 10 nm. Provide estimates for Δg, Δ3D and K3D. Comment.

Problem 4: A model of pinning - Kondorski’s law for

coercivity

In an extended system magnetization reversal often proceeds through nu-

cleation of small reversed domains, followed by their inflation through motion

of domain walls. Domain wall motion may however be hampered by local

heterogeneities in the material. This sets a finite value of applied field necessary

for the propagation, thus for magnetization reversal and coercive field. It is the

purpose of this problem to make the link between material inhomogeneities and

coercivity.

4.1. Energy landscape and propagation field

We consider a domain wall in a one-dimensional framework, as for deriving

the profile of the Bloch domain wall, see Pb. 5. Let us assume that the material

inhomogeneities create an energy landscape U(x) for the domain wall, where x
refers to the location of the wall, e.g. its center. Energies are expressed in J/m2

,

related to the translational invariance in the two directions perpendicular to x.
Assuming that an applied field does not change significantly the profile of the

domain wall, and hence its internal energy U(x), consider the extra term of the
Zeeman energy to derive a condition defining the propagation field. Themagnetic

is applied along the direction of magnetization in the domains.

4.2. An example of energy landscape

Starting from a homogeneous material let us model a local defect in the form

of a magnetically softer (i.e. anisotropy constant K − ΔK with ΔK > 0) insertion of

width δ`, located at position x = 0. Discuss what approach should be followed

if one wished to derive exactly the profile of the domain wall, especially the

boundary conditions at the edges of the defect. Past these considerations, to

handle simple algebra wemake the assumption of a rigid domain wall, i.e. Eq.(I.41)
still holds:

θ(u) = 2 arctan
(
exp

u− x
Δu

)
(III.19)

where x is the locus of the center of the domain wall. We also assume that the
defect is a perturbation, in the sense that δ`� Δu.
Under these conditions, show that the energy of the domain wall with center

at location x reads:
U(x) = 4√AK

[
1− 1

4

δ`

Δu
ΔK
K

1

cosh
2
(x/Δu)

]
(III.20)
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Draw a schematic graph of U(x) and display the characteristic length or energy
scales.

4.3. The propagation field

An external field is then applied along the easy axis of magnetization, ie

parallel (resp. antiparallel) to magnetization in the domains. Show that the

propagation field of the domain wall over the defect reads:

Hp = HaΔKK
δ`

Δu
1

3
√
3
. (III.21)

where Ha = 2K/µ0Ms is the so-called anisotropy field. How is this law modified
when the field is now applied with an angle θH with respect to the easy axis

direction in the domains? To do this, assume that H� Ha
Notice:

• The 1/ cos θH dependence of coercivity is often considered as a signature a

weak-pinning mechanism, a law known as the Kondorski model[127].

• This model had been initially published in 1939 by Becker and Döring[139],

and is summarized e.g. in the book of Skomski: Simple models of Mag-
netism[5].

• While coercivity requires a high anisotropy, the latter is not a sufficient con-

dition to have a high coercivity. To achieve this one must prevent magneti-

zation reversal that can be initiated on defects (structural or geometric) and

switch the entire magnetization by propagation of a domain wall. In a short-

hand classification one distinguishes coercivity made possible by hindering

nucleation, or hindering the propagation of domain walls. In reality both

phenomena are often intermixed. Here wemodeled an example of pinning.

• Simple micromagnetic models of nucleation on defects[129] were the first to

be exhibited to tentatively explain the so-called Brown paradox, i.e. the fact
that values of experimental values of coercivity in most samples are smaller

or much smaller than the values predicted by the ideal model of coherent

rotation[91].

Problem 5: Droplet model for nucleation

Here we are concerned with a simple model of nucleation of a reversed

domain in a material with magnetization Ms and exchange stiffness A. Starting
from a uniformly-magnetized domain, we assume that a so-called bubble of

radius R of reversed magnetization is nucleated thanks to a thermal fluctuation.
We examine whether the bubble expands or collapses, subject to an external field

applied antiparallel to the initial direction of magnetization. Let us write ΓW the
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energy per unit area of the domain wall between the non-reversed domain and

the interior of the bubble. For numerical evaluation we will consider K = 106 J/m3

and A = 10−11 A/m. We recall: kB = 1.38× 10
−23
m

2
· kg · s

−2
.

5.1. Three-dimensional case

We consider a bulk material, so the bubble is a sphere.

1. Based on crude geometrical approximations, write the total energy of the

bubble E(R), taking into account the wall energy and the Zeeman energy.
Find the stable and unstable positions for E(R), the latter defining the critical
radius Rc that you shall write. Make a sketch for E. Describe the evolution of
the bubble depending on the value of its radius.

2. Calculate the energy barrier ΔE = E(Rc) − E(0) to be overcome so that

nucleation is successful and leads to the propagation of the domain wall

on a long scale in the domain.

3. Assume an Arrhenius law for overcoming the barrier by thermal fluctua-

tions: the mean waiting time is τ = τ0 exp (ΔE/kBT ). From this, calculate
the expected thermal variation of the coercive field Hc(T ) for a given waiting
time τ .

4. We now assume ΓW = √AK , and a domain wall width δ =√A/K . Explain why
the model may be valid only if Rc ' δ. Write what condition this sets on H.
Calculate the coercive field at this cross-over. Comment.

5. Rewrite Hc(T ) using A and K , and provide a rough numerical evaluation for
the cross-over temperature based on ln(τ/τ0) = 25.

5.2. Two-dimensional case

We consider now a film with thickness t, so that the bubble is a disk with
thickness t and radius R.

1. Calculate again the energy barrier and the critical radius.

2. Calculate the temperature dependence of the coercive field, and the cross-

over temperature. Provide a numerical evaluation for the cross-over tem-

perature for t = 1 nm. Comment about the coercive field expected at room
temperature.

5.3. One-dimensional case

We consider now consider a wire with a cross-section with area S, so that the
bubble is a segment of wire with length 2R.

1. Explain why the previous calculations cannot be extended to one dimension

as is. Explain why youmaywrite as an approximation, instead: ΔE = (8√AK−
4µ0MsH√A/K )S.

2. Derive Hc(T ) from the above expression.
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3. Show that the system becomes superparamagnetic, and provide an expres-

sion for the blocking temperature TB. Make a numerical evaluation for
section S = 10−18m2

.



Chapter IV

Precessional dynamics of

magnetization

Overview

In the previous chapters we have considered the arrangement of magnetization

at rest, then its quasistatic evolution with time. At typically the nanosecond time

scale a crossover occurs, below which the time evolution of magnetization is mostly

governed by precession around the local effective magnetic field. The resulting

phenomena are drastically different, and request specific consideration. In this

chapter we review the physics of spin precession, and then examine a few cases of

precessional dynamics in nanomagnetism: ferromagnetic resonance, precessional

switching of magnetization, and domain wall motion.

138
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1 Ferromagnetic resonance and Landau-Lifshitz-

Gilbert equation

Only simple features of precession of magnetization are described in the follow-

ing, meant as an introduction to the topic. More detailed and rigorous coverage

may be found elsewhere, e.g. in the book of D. D. Stancil and A. Prabhakar[140].

1.1 Precession

Precession of magnetization around a magnetic field is the direct consequence

of the angular momentum underlying magnetic moments. Let us first consider

a magnetic moment µ of purely orbital nature (i.e., no contribution from spins),
modeled in a classical fashion with a circular loop of current: µ = SI. S is the vector
area normal to the loop of current, and I is the current flowing in the loop. It is
readily shown that

µ =
e
2m` (IV.1)

where e is the charge of the charge carrier, m its mass and ` = r × p its angular
momentum. γ = e/2m is called the gyromagnetic ratio. Note that γ is negative for
electrons, which thus have angular momentum and magnetic moment pointing

along opposite directions. Classical mechanics states that the time evolution

of the angular momentum obeys
.
` = Γ with Γ the mechanical torque, here of

magnetic origin and equal to µ0µ× H. From this we derive the time evolution for
the magnetic moment:

.
µ = µ0γµ× H (IV.2)

The gyromagnetic ratio γ (and γ0) is negative for an electron, due to its

negative charge. Thus, in most works the choice has beenmade to write

γ as a positive quantity, and insert the minus sign in the equation. Other

works consider γ as negative. To avoid ambiguity, here we write −|γ| in
place of γ, restricting the discussion to γ < 0. This means that |γ| should
be replaced with−|γ| in case a material with positive gyromagnetic ratio
is considered, e.g. with a band structure such that magnetism is related
to holes.

Expression Eq.(IV.2) remains valid for magnetic moments with both orbital and

spin contributions to the angular momentum, introducing the Landé factor in the

gyromagnetic ratio: γ = ge/2m (g = 1 for orbital magnetic moments, g ≈ 2 for spin

magnetic moments). In the following we use the notation γ0 = µ0γ for the sake of

concision. Again, note that γ0 < 0 for electrons, while some authors define it as

positive, requiring a minus sign in Eq.(IV.2). Eq.(IV.2) is straightforward to solve in

the case of a constant magnetic field H:
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μ

H

-|γ0|μxH

Figure IV.1 – Precession of amagneticmoment µ around amagnetic field. The

thick line is the energy-conservative trajectory, while the thinner one along with

arrows indicates the trajectory of magnetization when damping is considered.

 .
µx
.
µy
.
µz

 = −µ0|γ|

 µx
µy
µz

×
 0

0

H0

 (IV.3)

= −µ0|γ|

 µy
−µx
0

H0 (IV.4)

Let us write H = H0ẑ with H0 > 0, µ = µîi using Einstein’s compact notation, and
introduce the complex number Z = µx + iµy. From Eq.(IV.3) it follows that µz is
constant and

.Z(t) = iω0Z, with ω0 = |γ0|H0. We have readily Z = Z0eiω0t: the moment
is precessing around the applied field with the angular frequency ω0 (Figure IV.1).

• |γ|/2π is often expressed in frequency per tesla. |γ|/2π ≈
14GHz/T for orbital moments, and |γ|/2π ≈ 28GHz/T for spin

moments.

• The precession angular frequency ω0 does not depend on the

angle between the moment and the magnetic field.

• The trajectory of the moment is energy conservative, as its projec-

tion along the applied field remains constant. This is an obvious

consequence of the fact that the Lorentz force, at the base of

Eq.(IV.2), is energy conservative.
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1.2 Ferromagnetic resonance

When normalized per unit volume Eq.(IV.2) converts to magnetization:

.
m = −|γ0|m× H (IV.5)

The possibility to drive precession of magnetization at a specific frequency

in ferromagnetic bodies was discovered by Griffiths in 1946[141]; this is called

ferromagnetic resonance (FMR). The discrepancy between the observed angular

frequency with that expected from the above was soon solved by Kittel[142]. It is

these arguments that we describe below.

In practice, a constant magnetic field is applied to align magnetization along

a given direction, while precession is driven by a sinusoidal field of much small

magnitude applied along a transverse direction. Precession is usually monitored

through the losses of the transverse oscillatory field driving precession. The

difference with the previous part comes from the fact that in matter not only

the external field will be felt by magnetization, but also all fields deriving from the

local density of internal energy Etot. Formally, H must thus be replaced with an
effective field defined as

µ0Heff = −
δEtot
δM

(IV.6)

It is clear that the above generalization is consistent with the torque provided by

the external field, and derived from the Zeeman energy. New terms in matter

are the magnetostatic field Hd, and those microscopic terms associated e.g. with
magnetocrystalline or exchange energies, introduced in sec.I.3.

Exchange and anisotropy fields are written Hex = (2A/µ0Ms)∆m and
HK = (K/µ0Ms)∇mfK (m), with f the dimensionless anisotropy func-
tion (see Pb. 3).

Detailed discussion of ferromagnetic resonance in an arbitrary landscape of

total energy may be found elsewhere[143–145]. In the following we restrict the

discussion to the prototypical case of uniform magnetization in a soft magnetic

material, and consider only the magnetostatic fields in addition to the applied

field. We assume that the demagnetizing field is uniform and may be expressed

based on demagnetizing coefficients. Finally, only small angle precession around

ẑ is considered as is the case in most ferromagnetic resonance experiments. This
permits to derive simple formulas through Taylor expansions, while in general the
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angular frequency of motion depends on its amplitude. Eq.(IV.5) is rewritten:

.
m = −|γ0|

 mxmymz

×
 −NxmxMs
−NymyMsH0 − NzmzMs

 . (IV.7)

Although this set of equations can again be solved elegantly using a complex

variable Z defined from a linear combination of mx and my , let us use another
method. Eq.(IV.7) is first expanded: .mx

.my

.mz

 = −|γ0|
 my(H0 − NzmzMs) +mzNymyMs
−mzNxmxMs −mx(H0 − NzmzMs)
−mxNymyMs +myNxmxMs

 . (IV.8)

.mz is of second order with respect to the small transverse componentsmx andmy.
We can thus assume thatmz(t) ≡ 1 and the above equations become: .mx

.my

.mz

 = −|γ0|
 my [H0 + (Ny − Nz)Ms]
−mx [H0 + (Nx − Nz)Ms]

0

 (IV.9)

Then, differentiating the first line and replacing
.mx with the second one, one gets:

..
m = −γ2

0

[H0 + (Ny − Nz)Ms)] · [H0 + (Nx − Nz)Ms)]m (IV.10)

Thusmx(t) = mx,0 cos(ω0t) andmy(t) = my,0 sin(ω0t), with the following relationships:
ω0 = |γ0|

√
[H0 + (Nx − Nz)Ms] · [H0 + (Ny − Nz)Ms] (IV.11)

mx,0√H0 + (Nx − Nz)Ms = my,0√H0 + (Ny − Nz)Ms (IV.12)

The motion is thus an elliptical precession with angular frequency ω0. Note that

the previous case of an isolatedmoment is retrieved for Ni ’s all zero. It is also valid
for a sphere of soft magnetic material, with all Ni equal to 1/3. Of special interest
to discuss are the cases of a thin film, with a static field applied along either the

normal to the film, or along an in-plane direction.

Let us first discuss the case of an out-of-plane static field. The axes are chosen

such that Nz = 1 is associated with the perpendicular direction, while for in-plane
directions Nx = Ny = 0. The above equations become:

ω0 = |γ0|(H0 −Ms) (IV.13)

mx,0 = my,0 (IV.14)

This case is straightforward: the trajectories are circular and the angular velocity

is constant. Note that precession occurs only when the applied field exceeds the

magnitude of magnetization (Figure IV.2b). For H0 → Ms the precession frequency
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Figure IV.2 – Dispersion curves of ferromagnetic resonance in simples cases:

(a) single moment in an external field (b) thin film, field normal to the surface

(c) thin film, field in-plane.

vanishes, as the internal field around which precession occurs goes to zero. This

is called a soft mode.

Let us now discuss the case of an in-plane static field. We simply rotate the

axes: Nx = 1 is associated with the perpendicular direction, while for in-plane

directions Ny = Nz = 0. The above equations become:
ω0 = −|γ0|

√H0(H0 +Ms) (IV.15)

mx,0√H0 +Ms = my,0√H0 (IV.16)

When the applied field is small compared with magnetization Eq.(IV.16) shows

that the trajectory is very anisotropic, with mx,0 � my,0. The need to conserve
energy explains this trajectory: only a weak excursion is allowed out of the plane,

because of the high cost of demagnetization energy. As a consequence the angle

with the applied field is considerably reduced when mx is maximum, so that the
Zeeman energy is then very small in absolute value. Thus, with this geometry the

precession periodically converts most of the Zeeman energy into demagnetizing

energy and vice versa. The angular velocity reaches a maximum when the

perpendicular component of magnetization mx is maximum. The asymptotic
dependences are: ω0 ∼ |γ0|

√H0Ms at low field, and ω0 = |γ0|(H0 + γ0Ms/2) at high
field (Figure IV.2c). The linear dependance at high field has a simple meaning:

when H0 � Ms the situation is close to an isolated moment in a static field H0.
Here we considered precession around a main direction of the de-

magnetizing tensor. This is a usual and useful situation, however it

remains a specific situation. More general formulas should be used for

precessional around an arbitrary direction[143, 144].

Historically, ferromagnetic resonance was monitored as a function of the ap-

plied field, because an efficient source (field enhancement in a metallic cavity)

existed only at fixed excitation frequency. This corresponds to horizontal cross-

sections in the graphs on Figure IV.2. Since roughly the year 2000, ferromagnetic

resonance is also implemented in broad-band devices based on strip lines. This

corresponds to vertical lines on Figure IV.2. The superiority of this approach

is first its sensitivity because it is a local measuring device, second its ability
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to monitor the response under a magnetic field of arbitrary magnitude and

notably at remanence. This opened the possibility to measure resonance modes

of non-uniformly-magnetized structures, whose arrangement of magnetization

would not be preserved upon sweeping the field in a conventional ferromagnetic

resonance setup. A drawback is the possible non-uniformity of the applied field

due to the finite width of the strip line. This may require calibration and modeling

to extract quantitative information[146].

FMR to measure gyromagnetic ratio and exchange stiffness. Ferro-

magnetic resonance is a very important technique, for its ability to mea-

sure quantities hardly accessible otherwise, such as the gyromagnetic

ratio γ and exchange stiffness A (see sec.1.4). It also yields very precise
measurements of magnetization and anisotropy (see Pb. 3).

1.3 Damping and Landau-Lifshitz equations

As seen above, the precession of an isolated moment in a constant applied field

is energy conservative, and thus in principle goes on for ever. In condensed

matter, however, magnetization at a given point is coupled to the system through

the lattice (phonons), conduction electrons, and electrons on neighboring or-

bitals contributing to magnetization. Angular momentum and energy may be

exchanged with these baths, notably decreased for the latter. This is damping,

which permits that magnetization is essentially aligned along the effective field

after some time. Damping mechanisms are very complex and stochastic and can

only be taken into account analytically with a phenomenological term. Histori-

cally it was first introduced in 1935 in a form nowadays known as the Landau-

Lifshitz (LL) equation:

dm

dt = −|γ0,LL|m× H− (λ/Ms)m× (m× H). (IV.17)

In the right part of this equation, the first term is similar to the one already

discussed, and describes the energy-conservative precession. The second term

was added and it is exactly perpendicular to the energy-conservative one, while

preserving the norm of magnetization constant. It thus purely describes a

mechanism for releasing energy. The damping term is in most cases observed

to be (very) small compared to the precessional term: λ/(|γ0|Ms)� 1

In 1953, Gilbert made the analogy between damping and a viscous force for

a mechanical motion, opposed to the velocity: −ηdm/dt. This leads to the now-
called Landau-Lifshitz-Gilbert (LLG) equation:

dm

dt = −|γ0,G|m× H + α
(
m× dm

dt
)
. (IV.18)
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It can be shown that the two equations are exactly equivalent mathematically,

based on a suitable conversion between the parameters γ0’s, λ and α. In the limit

of low damping relevant for most experimental cases, as noticed above, one finds

with a second-order difference only: γ0,G = γ0,LL, which we will keep writing γ0, and

λ = α|γ0|Ms. Nowadays the Landau-Lifshitz-Gilbert form is of more common use,
than the Landau-Lifshitz one. The condition of low damping is thus expressed

as α � 1. Its influence on precession may be introduced as a perturbation to

the trajectories described above. In the simple case of circular precession this

results to first order in a relative decrease of angle between M and H of 2πα per

turn (Figure IV.1). The treatment of damping of a magnetic dipole moment for

ferromagnetic resonance in matter is the topic of Pb. 5.

Precession in magnetic recording. The characteristic time scale to

reach equilibrium is such that 1/(αγ ≈ 1 ns · T). Thus, precession of mag-

netization can no longer be ignored in magnetic storage devices with

high data throughput, both on the media and on the head side (write as

well as read head).

Fixed magnitude of M in micromagnetism. Notice that both equa-

tions thankfully preserve the norm of M, a hypothesis of micromag-

netism. Another equation was introduced to allow one to describe

mechanisms where the magnetization vector is not preserved in time

or space: the Landau-Lifshitz-Bloch equation[147]. It is more suitable

than the Landau-Lifshitz(-Gilbert) equation(s) to describe situations like

the Bloch point (see p.80), or ultrafast (de)magnetization processes[147,

148].

1.4 Spin waves

So far we have disregarded any contribution of exchange to the effective field,

which is suitable for describing uniform precession of magnetization. There also

exist non-uniform modes, for which the exchange field needs to be taken into

account: Hex = (2A/µ0Ms)Δm. The general theory of these modes goes beyond the
purpose of these notes. Only a textbook case is covered here.

In sec.1.1 we described precession of a moment µ around a magnetic field

using the complex function Z = Z0eiωt, standing for the components µx(t) = Re(Z)
and µy(t) = Im(Z), while µz ' 1. Let us extend this notation to describe modes of

the form:

Z = Z0ei(k · r+ωt) (IV.19)

Figure IV.3 illustrates the situation of so-called transverse spin waves, with mag-

netization pointing along ẑ and k chosen along the transverse x direction. When
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Figure IV.3 – Spin waves. Schematics for spin waves of the form Z = Z0ei(kx+ωt)
with (a) k > 0 (propagating towards −x̂) and (b) k < 0 (propagating towards +x̂).

computing the exchange field, Δm is described by ∂2Z/∂x2 = −k2Z. The LLG
equation

dm

dt = γ0m× (H0 + Hex) (IV.20)

is described with the complex notation:

dZ
dt = iZ|γ0|H0 + ik2Z

(
2A
µ0Ms

)
|γ0|. (IV.21)

This may be written dZ/dt = i|γ0|ωkZ with:
ωk = ω0 + k2Δ2dωM (IV.22)

with ωM = |γ0|Ms, and still ω0 = |γ0|H0. This simple non-uniform mode has a larger
angular frequency than the uniformmode, characterized by a quadratic variation

with the wave vector k. Forward and backward motion are here equivalent.

The ω(k) dispersion curve may be measured experimentally, using e.g. neutron
scattering. This approach is one of the rare techniques providing a direct estimate

for the exchange stiffness A.

Summary

Ferromagnetic resonance and Landau-Lifshitz-Gilbert equation. Magnetization

is a consequence of the angular momentum carried by the charged particles elec-

trons, whose dynamics is governed by torques. Its motion is thereby of precessional

nature. It is described by the Landau-Lifshitz-Gilbert equation, in which damping is

described phenomenologically. Among the prominent phenomena are resonance et

given frequencies, and propagating modes called spin waves.
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Figure IV.4 – A clever experiment to evidence precessional switching. Ring-

shaped reversed domains (dark contrast) induced by precessional magnetization

switching of a thin Co film initially uniformly-magnetized, with uniaxial magnetic

anisotropy in-the-plane along x̂[149].

2 Precessional switching of macrospins driven by

magnetic fields

In the previous section the ground for the LLG equation was set. Simple trajec-

tories were discussed with or without damping, especially the free precession

around a constant magnetic field. Since the late 1990’s precession was used in

conjunction with nanosecond pulses of magnetic field, to switch magnetization

through precessional (ballistic) trajectories. It can be faster and more energy-

efficient for switching magnetization than quasistatic fields.

2.1 The role of shape anisotropy

In 1999 Ch. BACK et al. reported an experiment, which opened the field of
precessional switching of magnetization[149]. They used a τ = 4.4 ps-long pulse

of the beam of a particule accelerator
IV.1
along the normal to a thin film with in-

plane magnetization, initially prepared with uniform magnetization aligned along

an easy axis. Observation of the sample after the shot showed that domains of

reversed magnetization had appeared, shaped like concentric crescents around

the impact (Figure IV.4). What is the physics at play, and what do we learn from

this experiment?

Let us make a handwaving description, before we derive equations. The

dynamics of magnetization is driven by the in-plane orthoradial Œrsted field

created by the current associated to the beam of charged particles. Thanks to the

cylindrical symmetry of the beam and the 1/r radial dependence of the strength
of the Œrsted field, the physics of the effect on magnetization of a pulse of

IV.1
SLAC: Stanford Linear Accelerator Center
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magnetic field of arbitrary magnitude and orientation could be derived based on

the location-dependent effect observed on the sample. While the initial direction

of magnetization is along +x̂, let us consider the case where the Œrsted field

is applied along the perpendicular direction +ŷ, and ignore damping. Following
Eq.(IV.5)

.
m is initially along −z and drives magnetization towards below the plane

of the film. At later stages, this gives rise to a demagnetization field along +ẑ,
which adds to the effective field. It results in a new component of

.
m aligned

along +ŷ. Very rapidly the demagnetizing field becomes the leading term in the
effective field against the Œrsted field, so that the main feature of motion is the

precession of magnetization around its own demagnetizing field. Another way of

seeing this is a large-angle precession around the applied field. As discussed for

FMR (Figure 1.2), the trajectory is very flat, due to the need to convert Zeeman

energy into demagnetizing energy. The angular frequency of motion is expected

to increase with the magnitude of the applied field, and thus be larger closer to

the impact. The final state long after the beam has terminated, depends on the

period T of precession compared with the fixed duration τ of the pulse of field.
For T = 2τ the magnetization performs half a turn, meaning final alignement

along −x̂ and thus switching. This is the most outer crescent with magnetization
reversed. Further inside T = τ : the magnetization makes one turn and falls back
along its initial direction. Still further inside 3/2 turns lead again to magnetization

switching.

Note on Figure IV.4 that no switching occurs with the field aligned close

to parallel or antiparallel to initial magnetization, because in those cases

the transient torque acting on magnetization is close to zero. This

and the symmetry of the pattern highlights the fundamental difference

between precessional switching and quasistatic switching, in which case

switching would only occur in the upper panel (y > 0 to get a negative

Hy).

The trajectories described above can be computed exactly when damping

is neglected. As an alternative to the integration of differential equations as

performed in the FMR section, one can derive analytically the trajectory from

the conservation of energy? While the general case involves non-standard

functions, in the absence of magnetocrystalline anisotropy it simply reads E =
−µ0M2

s
hmy + (1/2)µ0M2

s
m2z . Here h is the applied field normalized with magne-

tization. Combined with the constraint m2i = 1 this provides the projection of

the equation of motion in all three planes. Alternatively the trajectory can be

described parametrically usingmz as a parameter:
2hmy = m2z (IV.23)

m2x + (my + h)2 = 1 + h2
m2x +m2z +m4z/(4h2) = 1
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Figure IV.5 – Precessional switching of a thin film with zero in-plane

anisotropy, out-of-plane demagnetizing coefficient 1, and no damping. Trajec-

tories followed by magnetization during switching for h = 0.04: projection along

the three main planes, and three-dimensional view.

They are plotted on Figure IV.5. We recognize the large-angle precession around

the applied field, expected from the above handwaving discussion. So, the

determination of trajectories from energy conservation is a powerful method,

however, it does not provide the time-evolution nor the precession frequency.

2.2 Setting-in in-plane uniaxial anisotropy

The case of a thin film or flat nanostructure with a uniaxial anisotropy between

two in-plane axes is directly relevant in the context of magnetization switching,

and is richer in terms of physics. The detailed calculation is proposed in Pb. 2,

and the resulting trajectories are plotted in Figure IV.6. We define the anisotropy

field as usual as HK = 2K/µ0Ms, and hK = HK/Ms for the dimensionless variable.
In this case a threshold appears in terms of applied field. For h < hK/2 the
trajectories do not cross the plane mx = 0. Switching does not occur and

moderate-angle precession occurs around the combined applied and anisotropy

fields, in a direction intermediate between +x̂ and +ŷ. For h > hK/2 the trajectory
crosses the planemx; switching is again possible, as in the case of zero anisotropy.

It is interesting to understand why the threshold field for precessional switch-

ing is hK/2, while the quasistatic switching field in the Stoner-Wohlfarth model
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Figure IV.6 – Precessional switching of a thin film with in-plane uniaxial

anisotropy (anisotropy field hK , expressed in Ms units), out-of-plane demagnetiz-
ing coefficient 1, and no damping. Trajectories followed by magnetization during

switching for various values of applied field h: projection along the three main
planes, and three-dimensional view.

is hK along both the easy and hard axes. The examination of energy profiles
provides the answer (Figure IV.7). In the quasistatic picture of Stoner and

Wohlfarth, magnetization switching occurs when the local minimum vanishes; we

have seen in sec.III.1.1 that this happens at hK . To the contrary, in the precessional
case the system follows an iso-energy path. Thus, magnetization switching may

be possible when the starting point θ = 0 and the passing point allowing reversal

have an equal energy, which happens to be for hK/2 with the energy maximum
being at θ = π/2. The disappearance of a local minimum is not relevant because

the system does not remain at the bottom of energy wells in the precessional

regime; it does so only in the quasistatic regime.
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Figure IV.7 – Energy in precessional switching. Energy landscape (uniaxial

anisotropy plus Zeeman energy) for the external field applied along ŷ, i.e. the
in-plane hard axis along θ = 90◦. Landscapes are plotted for field values ranging
from zero to half the anisotropy field.

We now discuss the angular frequency when precessional switching is pos-

sible, i.e. for h > hK/2. While the time-integration of the LLG equations is
possible analytically, it involves non-trivial functions and may not be of easy

use[150]. As one is interested to switch magnetization at low applied field, an

approached scaling law has been derived, for application with high accuracy

in the range hK/2 < h < hK , which is of direct relevance for precessional
switching[151]: ω0 ≈ 0.847|γ0|

√Ms(H− HK/2). Examination of this formula along
with the corresponding trajectories brings some understanding (Figure IV.6). For

h → hK/2 the angular frequency vanishes, or in other words the period diverges.
The reason is the pinched point of the trajectory at (my ,mz) = (1, 0). At this
point the anisotropy field is locally parallel to magnetization (or in other words

all first-order derivatives of the energy are zero), so that the torque exerted on

magnetization vanishes. On the reverse, for increasing field, deviations from

this approached formula become noticeable. From the mathematical point of

view (i.e., exact however not meaningful for the practical purpose of precessional
switching), at high field the precession frequency should follow the slope |γ0|H as
for the case of FMR with in-plane magnetization [Eq.(IV.15)], or the free precession

of a macrospin with no internal field.

2.3 Practical conditions: finite damping and pulse length

Damping, length and shape of the pulse of applied field all affect the picture

developed above. Equations can be solved analytically only to first order for small

angle precession of constant magnitude, like for the case described in Pb. 5. In

other situations no exact solution can be derived, and approximations must be

introduced[150, 151], or numerical integration of the LLG equation performed[152].

Here we only provide a qualitative picture of switching varying damping, pulse

duration and pulse shape (Figure IV.8). Magnetization is initially along −x̂, and
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all directions and magnitudes of the applied field are considered. We call θH
the angle of the applied field with respect to the direction opposite to the initial

direction of magnetization.

Let us first consider the case of a square pulse of field, which was the one

we considered analytically in the absence of damping; it is displayed in the first

column of Figure IV.8. For a long pulse the switching diagram is the simplest, and

can be related to situations previously described:

• Switching occurs for most cases with field globally applied opposite to the

initial direction of magnetization, if of sufficient magnitude. The Stoner-

Wohlfarth astroid, bounded by the anisotropy field, can be recognized close

to the origin. This is consistent with the quasistatic picture.

• Switching does not occur for most fields applied globally parallel to the ini-

tial direction of magnetization. This is again consistent with the quasistatic

picture.

• In a narrow range around θH ' ±π/2, switched and non-switched regions
alternate regularly. This is consistent with the picture described for pre-

cessional switching with no damping and no anisotropy, although here

anisotropy is present.

For short pulse duration the diagram of switching is the richest, displaying

complex curved stripes. Remember that no reversal in the final state does not

mean that significant precession has not occurred, as it can result from an even

number of half-turns. A few noticeable facts are the following:

• Stripes are very densely packed close to θH = 0. In practice, this means that
switching is very sensitive to the initial conditions and to any perturbation

or deviations of the material properties.

• No switching occurs for 3π/4 < θH < 5π/4. It can easily be shown that the

energy barrier cannot be crossed, so precessional switching is not effective.

• The largest pocket allowing switching is located around θH. This is consistent
with Figure IV.7 which shows that the energy barrier vanishes first for this

angle. This highlights that precessional swithing is most efficient at crossed

angle.

For intermediate pulse width the features aer intermediate.

The effect of broadening the pulse is to dramatically smoothen the switching

diagram, towards the quasistatic features. This is clear in Figure IV.8f which looks

like the Stoner-Wohlfarth astroid.

Summary

Precessional switching of macrospins driven by magnetic fields. Precessional

magnetization switching, relevant at time scales below typically 1 ns, displays features

dramatically different from quasistatic switching. The most efficient switching in

terms of magnitude and length of pulse, is when the field is applied at right angle
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Figure IV.8 – Transition from precessional switching to quasistatic switching.

Diagrams of switching versus the components of applied Hx and Hy , based on
macrospin precessional simulations of a flat element with demagnetizing factorsNx = 0.008, Ny = 0.012 and Nz = 0.980 and spontaneous magnetization µ0Ms =
1.08 T. This implies and in-plane anisotropy field of 4.32mT. The damping is α =
0.008. The initial direction of magnetization is along −x̂, and light areas mean
switching. Each circle designates an increment of field of 2.5mT.
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with the initial direction of magnetization, because the torque driven precession is

maximum. However, ringing and multiple precession may occur, which makes the

process sensitive to initial conditions and distributions of properties. It is therefore

not realistic to implement it as such in devices.

3 Precessional motion of domain walls and vortices

driven by a magnetic field

The formalism to describe the precessional nature underlying domain wall mo-

tion, is very similar to the one related to magnetization switching, detailed in

the previous section. In the following we consider situations with increasing

complexity, to introduce the various effects at play one by one.

We consider in all cases a one-dimensional model of domain wall, withmagne-

tizationm(z) varying between two domains aligned along +ẑ and −ẑ (Figure IV.9).
This head-to-head orientation of domains is suitable to describe strips with

in-plane magnetization, with magnetization in the domains aligned along the

strip length, which we will use as a prototypical case to illustrate this section.

Nevertheless, the equations can be transposed to other situations, e.g. strips with
perpendicular magnetization, or thin films with magnetization perpendicular to ẑ
in the domains. We will make use of spherical coordinates around this ẑ direction
to describe the direction of magnetization, with θ =<m, ẑ >, and ϕ the transverse
azimuth of magnetization (Figure ??). A magnetic field H will be applied along ẑ.
While the situation may be described more rigorously by considering the entire

domain wall, here we will derive most of the physics considering the dynamics at

the center of the domain wall. Finally, note that the wall width will be called πΔ,
defined such that dθ/dz = 1/Δ at the center of the wall.

Considering the center of the domain wall can be legitimated by the fact

that is it where the torque arising from the applied field is the largest.

Besides, as the curvature of θ(z) is zero at this point, there is no exchange
contribution to magnetization dynamics. This boils the problem down

to considering the domain wall as a macrospin, similar to the situation

describing the transition between Bloch and Néel walls in thin films (see

p.74).

3.1 Domain walls – The case of azimuthal isotropy

In a first step we disregard any transverse anisotropy, so that magnetic anisotropy

may be written Ea = Ku sin2 θ, i.e. with no dependence on ϕ. At rest the wall width
is πΔ = πΔu. This situation is analogous to that of a cylindrical wire. In the LLG
equation the dominating torque is generally the precessional one, because of the

low value of α. This torque, due to H and acting on the core of the domain wall,
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Figure IV.9 – Spherical coordinates to describe domain wall motion. The

coordinates apply equally to cylinders and strips, with ẑ along the axis. r̂, θ̂ and
ϕ̂ are the local unit vectors related to the spherical coordinates for magnetization
along the direction (θ,ϕ).

yields:
.
m = −|γ0|m × H. Asm = r̂ and H = Hẑ, .m = |γ0|Hϕ̂. Thus, the variation of

m is purely precessional, with the angular frequency
.
ϕ = ω0 = |γ0|H. At this stage

θ remains equal to π/2, which means that the domain wall does not move.

The absence of forward motion of the domain wall if damping is not

considered, can be understood simply. If the domain were to move, this

would imply a change of energy of the system, due to the Zeeman en-

ergy of the two domains not being equal. This would be a contradiction

with the conservation of energy, as no damping is considered.

Let us now consider the damping term as a perturbation to the previous motion,

so that αm × .
m can be approximated with −α|γ0|m × (m × H). Following the

above, this torque reads −α|γ0|̂r × ϕ̂ = α|γ0|Hẑ. As dr̂/dθ = −ẑ for θ = π/2, the
full LLG equation reads:

.
m = |γ0|Hϕ̂ + α|γ0|Hẑ. Identification with .m =

.
θθ̂ +

.
ϕϕ̂

yield
.
θ = −α|γ0|H, also showing that the damping torque is orthogonal to the

precessional torque. The core of the wall being defined by θ = π/2, the variation

of θ of this moment initially at the core of the wall, means that the wall is moving.

To convert this angular time variation into the domain wall speed, we use the

formalism of the particulate derivative of a quantity A:
DA
Dt =

∂A
∂t + (v ·∇)A. (IV.24)

This equation can be understood in the following manner. DA/Dt refers to the
variation of A in the moving frame of the domain wall. This variation may come
both from the time variation of A in the fixed frame (the first term), or the fact that
the particle (here the particule is the wall) moves in the spatial field A(r) at speed
v, to that the time variation of A in the fixed frame depends also on how A varies
along the trajectory of the particle (second term). For A = θ we have Dθ/Dt = 0 as,
by definition, as θ ≡ π/2 at the center of the wall. As the model is unidimensional,

v ·∇ = v ∂/∂z. Thus, Eq.(IV.24) boils down to: v∂θ/∂z = − .θ = α|γ0|H. Noticing that
by definition ∂θ/∂z = 1/Δ, we now have the full description of the dynamics of the
domain wall:
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.
ϕ = |γ0|H (IV.25)

v = α|γ0|HΔ (IV.26)

Eq.(IV.26) can be rewritten v = µH with µ = α|γ0|Δ the mobility. The above shows
that the main dynamics is azimuthal precession, while the forward motion is

only related to damping, yielding a very slow forward motion proportional to α.

This one-dimensional model with no azimuthal anisotropy has been validated by

numerical simulation of domain wall motion in cylindrical nanowires[153, 154].

While themodel is the simplest, the experimental investigation of cylindrical wires

requires a bottom-up synthesis method such as electrochemistry performed in

the cylindrical pores of a template, followed by the dissolution of the matrix for

inspection of single wires. Domain walls in such wires have been imaged only

recently[155, 156], and their dynamic features have not been reported yet.

The above may be solved exactly and more quickly based on the

Landau-Lifshitz equation, the so-called solved form providing directly

the time-derivative of magnetization [Eq.(IV.17)]. However, the effects of

precession and damping are not as clearly highlighted as in the above.

3.2 Domain walls – The case of azimuthal anisotropy

Most one-dimensional magnetic conduits investigated so far experimentally,

consist of flat strips patterned with lithography and thin-film technology. Still

considering softmagneticmaterials with in-planemagnetization as an illustration,

we call x the in-plane direction transverse to the strip, and y the direction
perpendicular to the strip (Figure IV.9). Remaining in the framework of a one-

dimensional model, we assume that the domain wall is of transverse type at

rest (see Figure II.15, p.88). For t < 0 the applied field is zero, while for t ≥ 0

the applied field is Hẑ.
We first describe the situation in a handwaving fashion, before deriving formal

equations. At t = 0+ the only non-zero torque in the LLG equation is ΓH, related to
the applied fieldH, so that Eq.(IV.25) applies, and .m is along ϕ̂. This onset is similar
to azimuthal precession, as described in the previous paragraph. However, at

later stages the situation differs because the y component of m resulting from
azimuthal precessional, gives rise to a demagnetizing field Hd along −ŷ, around
which precession also occurs. This situation is similar to the case of precessional

switching of a macrospin (sec.2.1). This implies a torque Γd ∼ m × ŷ oriented
along ẑ, contributing to the forward motion of the wall. Over time the elevation
of m along ŷ keeps increasing, as .ϕ > 0 due to precession around H. In turn,

this increases Hd, and the forward motion. Very soon Γd becomes large, so that

the associated damping term αm × Γd ∼ −αϕ̂ needs to be considered. This
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contribution opposes the one associated with precession around the applied

field. It raises with ϕ, while the latter does not. Thus, after a while the system

may reach a stationary state with constant ϕ, if a balance is found. Below we

derive more formal equations, to determine in which case balance occurs or not,

and what the resulting speed is.

The torque giving rise to precession around the applied field is:

ΓH = −|γ0|m× H
= −|γ0|H r̂ × ẑ
= |γ0|H ϕ̂ (IV.27)

The torque giving rise to precession around the demagnetizing field Hd =

−Ms sinϕ ŷ is:

Γd = −|γ0|m× Hd
= |γ0|Ms sinϕ r̂ × ŷ
= |γ0|Ms sinϕ cosϕ ẑ (IV.28)

Considering damping as a perturbation
.m ' ΓH + Γd, so that the damping term

reads:

αm× .
m = α r̂ ×

[
|γ0|H ϕ̂ + 1

2
|γ0|Ms sin(2ϕ) ẑ]

= α|γ0|
[Hẑ− 1

2
Ms sin(2ϕ) ϕ̂] (IV.29)

The above three equations can be combined to yield the full LLG equation:

.m = |γ0|(αH + 1

2
Ms sin 2ϕ) ẑ + |γ0|

[H− 1

2
αMs sin(2ϕ)] ϕ̂ (IV.30)

A steady-state solution for
.
m is characterized with a constant component along

ẑ, and no component along ϕ̂ (implying constant ϕ). This is possible only if there
exists an azimuth ϕ for which H = (1/2)αMs sin(2ϕ), or in other words: sin(2ϕ) =
2H/(αMs). In this case the wall speed is determined from the ẑ component |γ0|(α/+
1/α)H ' |γ0|H/α, so that in the end the wall velocity is:

v = |γ0|HΔ
α

(IV.31)
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The case of strips is drastically different from the one of azimuthal

anisotropy, as now the speed is now inversely proportional to damping,

which makes a great difference as in most cases α � 1. The reason is,

the smaller the damping, the larger sin 2ϕ need to be to balance H in the
second term of Eq.(IV.30), so larger the elevation is, the demagnetizing

field, and hence the precession angular frequency around it.

This remains valid while H ≤ HW, with HW = αMs/2 the so-called Walker field[157].
It is associated with the maximum speed vW = |γ0|MsΔ/2, called the Walker speed.
Above this threshold ΓH is too large to be compensated by damping. Azimuthal
precessional occurs again as in the case of cylinders, albeit with a non-constant

angular velocity due to the difference of energy along the x and y directions. It
results in a sharp drop of the wall mobility, a phenomenon called the Walker

breakdown. For very large applied fields, it can be shown that the mobility of

the wall recovers a scaling law inversely proportional to α.

In the above we named Δ the wall parameter (πΔ is the wall width).
While it equals Δu at rest, it is no more a constant at later stages.
During motion the wall width tends to decrease, to lower the energy

of the system as the core of the domain wall is now associated with a

significant demagnetizing energy. In practice, this introduces a negative

curvature to the initially-expected linear variation of v with H. One may
account for it writing Δ =√A/(Ku + NKd sin2 ϕ) where Ku is themagnitude
of the transverse hard anisotropy direction, and N the demagnetizing
coefficient along y[158]. This also means that the maximum velocity is
reduced, compared with the above simplified equations.

In these notes the discussion is restricted to the case of a one-dimensional

model. This hypothesis is analogous to the case of magnetization switching

described by the Stoner-Wohlfarth model. We have already mentioned that this

hypothesis can be too strong, in which case the model may largely overestimate

the actual switching field of a realistic sample. Here, for finite-width strips the

1d model overestimates the energy barrier preventing the core of the wall from

performing an azimuthal rotation, because of the hypothesis of invariance of

magnetization across the strip. Micromagnetic simulations show that a micro-

scopic scenario allows to switch the core of the wall at a threshold much below

the Walker field. Starting from a transverse wall, it consists of the nucleation of

a vortex or antivortex at the edge of the strip, which progressively inverts the

transverse component of the transverse wall by moving towards the opposite

edge. Thus, a parallel can be made with the breakdown of the Stoner-Wohlfarth

model, when incoherent switching mechanism occur, consisting of nucleation

and propagation steps. Here, in a finite-width the magnetization texture has a

2d feature; the transverse component of the wall is a 1d object, which can be

switched by the propagation of an essentially 0d object (the core of a vortex or

antivortex)
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Orders or magnitude are the following. In the 1D model, for α ' 0.01 and

µ0Ms ' 1 T, the Walker field µ0HW is of the order of a few millitesla, while the
Walker speed is of the order of 1 km/s. In finite-width strips theWalker breakdown

occurs. In realistic systems these values are somewhat lower, mostly due to the

finite-size effect decribed above.

Summary

Domain wall motion driven by magnetic field. We considered the one-

dimensional case with a head-to-head domain wall as a model, for which all

features of the wall motion can be derived analytically, assuming some reasonable

assumptions. For cylinders the main feature is the azimuthal precessional of the wall

core around the applied field, while the wall mobility (speed over field) is low because

inversely proportional to damping α. To the contrary, for strips (characterized by

an azimuthal dependance of the demagnetizing field) the initial mobility is high and

proportional to α, before dropping at the so-calledWalker field due to the reentrance

of azimuthal precession. In real strips, due to the finite width, or even more so

in extended thin films, micromagnetic processes are more complex and both the

Walker field and the speed are often reduced.



Problems for Chapter IV

Problem 1: Self-testing

1. What is the gyromagnetic ratio γ? What is the difference between γ and γ0?

2. Write the Landau-Lifshitz-Gilbert equation, including the precessional and

the damping terms.

3. What is the expression of the generalized effective field?

4. Describe the trajectory of magnetization for undamped precession: a. of an

isolated moment around a fixed magnetic field b. in a body subject to an

internal demagnetizing field.

5. What is a spin wave?

6. What is the most efficient direction of applied field to switch magnetization

in the precessional regime?

7. Explain why precessional switching can be achieved for a magnitude of

applied field lower than that in the Stoner-Wohlfarth model.

Problem 2: Short questions

1. Demonstrate Eq.(IV.1).

2. Following Landau-Lifshitz equations (sec.1.3), a system reaches equilibrium

if at any point the effective field is parallel to magnetization. Give an

example of a system at equilibrium where the effective field is zero, and

one with a non-zero effective field.

3. Explain what happens microscopically for the ferromagnetic resonance of

a thin film of soft magnetic material under a static perpendicular field with

magnitude smaller than magnetization.

4. In sec.1.1 we introduced the complex variable Z = µx + iµy to solve the
simple case of precession of an isolated moment. Which variable should

be introduced to address the case of precession under an in-plane static

field from Eq.(IV.7)?

160
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5. In Figure IV.8 no switching occurs for 3π/4 < θH < 5π/4, whatever the pulse

magnitude, width and length. Proove that indeed no switching can occur.

Problem 3: Effective fields

All effective fields affect the precession of magnetization. The formulas given

in sec.1.2 are given for simple geometries and external applied field plus dipolar

field only. They need to be adapted in case magnetocrystalline anisotropy or

exchange energy contribute to internal fields. It is the purpose of this problem

to provide a glimpse on these fields and their use. In Eq.(IV.6) we introduced the

general form for the total effective field, which we will use in the following.

3.1. Anisotropy fields

1. Consider a uniaxial anisotropy of second order: Ea = K sin2 θ = K (1 − m2z).
Compute the associated effective field HK, called the anisotropy field. On
one single graph, plot the energy and the field versus the direction of

magnetization, and comment.

2. Consider now a fourfold anisotropy of second order in the (x, y) plane: Ea =K4 sin4 θ. Compute the anisotropy field. Plot again energy and field, and
comment.

3.2. The exchange field

We consider the exchange energy with volume density Eex = A∑i(∇mi)2. Due
to the spatial derivative a variational treatment is required. Estimate the impact

of an infinitesimal functional variation δm on the total energy δE =
∫
V
δE dV.

Proceeding through identification with δE = −µ0Ms ∫VHex · δmdV, find the form
of the exchange field: Hex = (2A/µ0Ms)δm
3.3. Cases combining anisotropy and exchange

1. Consider a simple wall such as in sec.I.5. Compute the anisotropy and

exchange fields for the simple linear model; comment. Consider the exact

wall profile; comment about equilibrium of magnetization at any point.

Problem 4: Precessional switching of magnetization

We consider the precessional dynamics of magnetization in a uniformly-

magnetized body and neglect energy losses. We focus on a thin film infinitely

extended in the lateral directions (Figure IV.10). We assume a uniaxial anisotropy
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of second order with volume density K and easy direction along x. The system
is initially at rest with uniform magnetization along +x̂. Starting at time t = 0 a

constant magnetic field of strength H > 0 is abruptly applied along +ŷ.

x

y

z

Figure IV.10 –Definition of axes for an extended thin filmwith normal along ẑ.

4.1. Energy

Express the volume density of energy E (Zeeman + internal) of the system in
terms of all three components of magnetization Mi. Normalizing magnetization
M and magnetic field H with Ms (write thesem and h), and energy densities with
µ0M2

s
, provide the volume density of energy e in reduced units. We will write hK

the reduced anisotropy field associated with K : HK = 2K/(µ0Ms).
4.2. Equations of motion

Based on the conservation of energy, provide the equations of the trajectory

in the (x, y) plane and in the (y, z) plane. Show that these are equations of ellipses.
4.3. Small angle precession

First consider the case h � hK . Based on the above equations sketch the
trajectories in the (x, y) and (y, z) planes. To determine the sign of my remember
that magnetization obeys equation:

dm

dt = γm× µ0H (IV.32)

where γ < 0 is the gyromagnetic ratio. Comment.

4.4. Magnetization switching

Precessional switching (magnetization going from initially +x̂ to the −x̂ direc-
tion) may be possible if mx = 0 is reached on the trajectory. Still based on the

above equations, determine the value ofmy for whichmx may be zero. Discussing
the constraints on my , show that this condition is met if h ≥ hK/2. Computing e
formx = 1 andmy = 1, explain why switching may be possible under this condition
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whereas h ≥ hK is required in the static Stoner-Wohlfarth model.

Problem 5: Damping

We consider precession around a magnetic field of constant magnitude H0,
as in sec.1.1. Being an external field, H0 does not depend on the direction of

magnetization. We will use spherical coordinates, with the z axis chosen along H0.
The unit vectors will be named r̂, θ̂ and ϕ̂. Damping is accounted for with the LLG
equation, with damping parameter α (sec.1.3). We will derive solutions in the limit

α� 1, for which damping effects will be treated pertubatively.

5.1. Damping for free oscillations

1. First neglect damping. Express the rate of change of magnetization dm/dt,
based on the unit vectors of the spherical coordinates. Deduce θ(t) and
ϕ(t), starting from the state of magnetization (θ,ϕ) = (θ0, 0). We will write
ω0 = |γ0|H0. Describe the motion and the meaning of ω0

2. We now consider damping pertubatively, based on the previous result for

dm/dt. Show that dθ/dt = −αω0 sin θ
3. Solve the above equation starting from the initial condition θ(t0) = θ0.
4. We first consider small angle precession: θ0 � 1. Simplify the previous

equations in that case, and express θ(t) and dθ/dt. What is the typical time
scale and number of turns towards the final equilibrium state?

5. We now consider large angle precession. Express dθ/dt for θ = π/2.

Comment, with respect to the previous result. Provide an estimate of the

time needed to approach the equilibrium state starting from θ0 with an

arbitrary value.

5.2. Damping in ferromagnetic resonance

We now consider small-angle resonance (θ � 1), sustained by an external

excitation. The excitation is considered to be a field of constant magnitude h,
rotating in the (x, y) plane at the angular frequency ω. It is easier to seek solutions
with the complex notation for vector components in the (x, y) plane, while the
component along uz is still described by a real number. Thus, any vector B may
be described by the set (β,Bz). As a shortcut we will write: B = (β,Bz). Thus,
the excitation field will be written: h = (H0η, 0) with η = η0 exp(iωt) and η � 1.

In the limit of small angle precession, the reduced magnetization will be written:

m = (µ, 1), with |µ| � 1

1. Show that (0, 1) × (β, 1) = (iβ, 0), and: (β, 0) × (γ, 0) = (0, Im(iβγ)) with γ the
complex conjugate of γ. We may write Im(iβγ) = (βγ − βγ)/2.

2. To get used to the complex notation, express dm/dt with no damping and
no excitation. Show that this results in dµ/dt = −iγ0H0µ, and make the link
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with the result of free precession described in the previous part. Consider

now non-zero damping, and express dµ/dt again. Integrate this differential
equation and again make the link with the result of the previous part.

3. Consider now both damping and excitation h. We will neglect all second-

order terms, i.e. those in αµ, αη and ηµ. Apply Eq.(IV.18) and show that this
yields: dµ/dt = (i − α)ω0µ− iω0η.

4. Solve the above equation seeking a solution with the form: µ = µ0 exp(iωt).
Express the magnitude and the phase of the response, and make graphs.

Calculate the full width at half maximum Δω of the amplitude signal.
5. Draw and discuss the various torques at play in Eq.(IV.18) at resonance: ω =

ω0.
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Symbols

A Exchange stiffness Defines the micromagnetic volume density of

exchange energy Eex = A (∇m)2, measured in
J/m

B Magnetic induction Tesla is the unit for B, and divB = 0 is one of

Maxwell’s equations.

Emc Volume density of

magnetocristalline

anisotropy

EZ Volume density of Zee-

man energy

Measured with J/m3
.

EZ Zeeman energy Integrated over an entire system, and mea-

sured with J.

g Landé factor g = 1 for magnetic moments of purely orbital

origin, and g ≈ 2 for magnetic moments of

purely spin origin.

H Magnetic field Measured in A/m. µ0H is the induction sensed

by local magnetic moments giving rise tomag-

netization.

Hd Dipolar field, or demag-

netizing field

Dipolar field is the general name for magnetic

field arising from a distribution of magneti-

zation in space. Demagnetizing field is the

name when this field is considered inside the

magnetic body itself.

I Electric current Measured with A.

j Volume density of elec-

tric current

Measured with A/m
2
.

J Interatomic exchange

energy

Example: E12 = −JS1 · S2.
Kd Dipolar constant Kd = 1

2
µ0M2

s
, measured in J/m

3
.

Ku Uniaxial anisotropy con-

stant

For the case of magnetic anisotropy: Ea =Ku sin2 θ, measured in J/m3
.
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M, M Magnetization (vector

and magnitude)

General definition such as in Maxwell’s equa-

tions, making no hypothesis in the origin of

magnetization, spontaneous or induced (sus-

ceptibility).

m Local unit vector parallel

to magnetization.

M The total moment of

magnetic system

In the case of uniform magnetization, M =

MsV with V the volume of the system
Ms, Ms Spontaneous

magnetization

Magnetization when it arises from magnetic

ordering

N Demagnetizing

coefficient

May be written Ni for the coefficient along a
main direction i; or more generally the tensor
coefficient Nij such that 〈Hd〉 = −N ·M .

` An angular momentum

Q Quality factor Q = Kmc/Kd for the micromagnetic quantity.
Also used with a different meaning in the con-

text of atomic force microscopy.

γ Gyromagnetic ratio γ = ge/2m
ΓW Energy of a domain wall,

per unit area

Δu Anisotropy exchange

length

Δu = √A/K with A the exchange stiffness andK the anisotropy constant. Also sometimes
called: Bloch wall parameter

Δd Dipolar exchange length Δd = √A/Kd = √2A/µ0M2
s
with A the exchange

and Ms the spontaneous magnetization. Also
sometimes called: exchange length.

µ,µ A pinpoint magnetic

dipole

µ0 Magnetic permeability

in vacuum

µ0 = 4π × 10
−7
H/m

φd Scalar potential for the

dipolar field Hd

Hd = −gradφd

ω0 Resonance frequency Used in various context: atomic force mi-

croscopy; ferromagnetic resonance.

Acronyms

AFM Atomic Force Microscopy

EMF Electromotive force

LL Landau-Lifshitz (for the equation describing the time evolution of

magnetization)
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LLG Landau-Lifshitz-Gilbert (for the equation describing the time evolu-

tion of magnetization)

MAE Magnetic Anisotropy Energy

MFM Magnetic Force Microscopy

PMA Perpendicular Magnetic Anisotropy

SEMPA Scanning Electron Microscopy with Polarization Analysis

SPLEEM Spin-Polarized Low-Energy Electron Microscopy

SQUID Superconducting Quantum Interference Device

TXM Transmission X-ray Microscopy

UHV Ultra-High Vacuum

VSM Vibrating Sample Magnetometer

Glossary

creep Propagation in the creep regime: the domain wall remains

most of the time at rest, andmoves forward only in the form

of discrete jumps, which are thermally activated .

erg Unit for energy in the cgs-Gauss system. Is equivalent to

10
−7
J.

Extrinsic In the context of magnetization processes, an effect related

to inhomogeneities, also called defects, such as grains or

grain boundaries, multi-phased materials, roughness etc.

Intrinsic In the context of magnetization processes, an effect related

to the material parameters (anisotropy, magnetization, ex-

change) and the sample shape only.

Macrospin The model where uniform magnetization is assumed in a

system, whose description may thus be restricted to the

knowledge of one or two degrees of freedom, the angular

directions of a hypothetical spin. When formerly written

as a variable, the macrospin may be dimensionless, or

have units of A.m
2
for a volume, A.m for magnetization

integrated over a surface (e.g. that of a nanowire), or A for
magnetization integrated along a thickness (e.g. that of a
thin film).

Micromagnetism All aspects related the arrangement of magnetization in do-

mains and domain walls, when the latter are resolved (i.e.,
not treated as a plane with zero thickness nor energy). The

term applies to theory, simulation and experiments. Except

some rare cases that may be considered as fine points, mi-

cromagnetism is based on the description of magnetization

by a continuous function of constant and homogeneous

magnitude equal to the spontaneous magnetization Ms.



168 APPENDICES

Nanomagnetism Broadly speaking, all aspects of magnetism at small length

scale, typically below one micrometer. This concerns

ground-state (intrinsic) properties such as magnetic or-

dering and magnetic anisotropy, as well as magnetization

configurations and magnetization reversal at these small

scales. Notice that some persons restrict the meaning of

Nanomagnetism to the former.



Bibliography

[1] S. BLUNDELL, Magnetism in condensed matter, Oxford University

Press, 2001, a basic however clear and precise review of magnetism

in condensed matter. Definitely a major reference.

[2] R. SKOMSKI, Simple models of magnetism, Oxford, 2008, an excellent

entry point for magnetism, especially nanomagnetism. Simple and

hand-waving presentations, with references for readers seeking a

deeper insight.

[3] J. M. D. COEY, Magnetism and magnetic materials, Cambride University

Press, 2010, an excellent book about magnetism. Of particular

interest for reviewing properties of various types of materials

and compounds. To read absolutely.

[4] C. L. DENNIS, R. P. BORGES, L. D. BUDA, U. EBELS, J. F. GREGG, M. HEHN,

E. JOUGUELET, K. OUNADJELA, I. PETE J, I. L. PREJBEANU, M. J. THORNTON, The

defining length scales of mesomagnetism: a review, J. Phys.: Condens.

Matter 14, R1175–R1262 (2002).

[5] R. SKOMSKI, Nanomagnetics, J. Phys.: Condens. Matter 15, R841–

896 (2003), review: overview of fundamental and micromagnetic

aspects (static and dynamic) of growth and artificial magnetic

nanostructures.

[6] A. HUBERT, R. SCHÄFER, Magnetic domains. The analysis of magnetic

microstructures, Springer, Berlin, 1999, micromagnetic theories and

experimental results, imaging techniques.

[7] A. P. GUIMARAES, Principles of Nanomagnetism, Springer, 2009.

[8] F. CARDARELLI, Encyclopedia of Scientific units, weights and measures,

Springer, London, 2003, comprehensive reference about units:

systems, conversions, and incredible set of units in all fields

of physics and beyond.

[9] Bureau International des Poids et Mesures.

URL http://www.bipm.org/

169

http://www.bipm.org/


170 BIBLIOGRAPHY

[10] J. STÖHR, H. C. SIEGMANN, Magnetism – From fundamentals to nanoscale

dynamics, no. 152 in Springer series in Solid-State Sciences, Springer,

Heidelberg, 2006, comprehensive review book on Magnetism. Slightly

annoying with respect to the choice of defining B = µ0H +M.

[11] W. F. BROWN, Theory of the Approach to Magnetic Saturation, Phys. Rev. 58,

736–743 (1940).

[12] A. HUBERT, W. RAVE, Systematic Analysis of Micromagnetic Switching Pro-

cesses, Phys. Stat. Sol. (b) 211 (2), S815–829 (1999).

[13] E. C. STONER, The demagnetization factors for ellipsoids, Philos. Mag. 36,

803–821 (1945).

[14] P. RHODES, G. ROWLANDS, Demagnetizing energies of uniformly magnetized

rectangular blocks, Proc. Leeds Phil. Liter. Soc. 6, 191 (1954), demagnetizing

factor in rectangular blocks.

[15] A. AHARONI, Demagnetizing factors for rectangular ferromagnetic prisms, J.

Appl. Phys. 83 (6), 3432–3434 (1998).

[16] G. ROWLANDS, Magnetising energies and domain structures in ferromagnet-

ics, Ph.D. thesis, University of Leeds, Leeds (1956).

[17] D. A. GOODE, G. ROWLANDS, The demagnetizing energies of a uniformly

magnetized cylinder with an elliptic cross-section, J. Magn. Magn. Mater.

267, 373–385 (2003).

[18] B. BORCA, O.FRUCHART, E.KRITSIKIS, F.CHEYNIS, A.ROUSSEAU, PH.DAVID,

C.MEYER, J. TOUSSAINT, Tunable magnetic properties of arrays of Fe(110)

nanowires grown on kinetically grooved W(110) self-organized templates, J.

Magn. Magn. Mater. 322 (2), 257 (2010).

[19] G. ROWLANDS, On the calculation of acoustic radiation impedance of

polygonal-shaped apertures, J. Acoust. Soc. Am. 92 (5), 2961–2963 (1992).

[20] M. BELEGGIA, M. DE GRAEF, On the computation of the demagnetization

tensor field for an arbitrary particle shape using a Fourier space approach,

J. Magn. Magn. Mater. 263, L1–9 (2003).

[21] M. BELEGGIA, M. DE GRAEF, Y. T. MILLEV, Magnetostatics of the uniformly

polarized torus, Proc. Roy. Soc. Lond. A 465, 3581 (2009).

[22] J. C. MAXWELL, A Treatise on Electricity and Magnetism, 3rd Edition, Vol. 2,

Clarendon, Oxford, 1872.

[23] B. A. LILLEY, Energies and widths of domain boundaries in ferromagnetics,

Philos. Mag. 41 (7), 401–406 (1950).



BIBLIOGRAPHY 171

[24] J. P. JAKUBOVICS, Comments on the definition of ferromagnetic domain wall

width, Philos. Mag. B 38 (4), 401–406 (1978).

[25] A. A. THIELE, Steady-State Motion of Magnetic Domains, Phys. Rev. Lett.

30 (6), 230–233 (1973).

[26] P. BRUNO, Geometrically Constrained Magnetic Wall, Phys. Rev. Lett. 83 (12),

2425 (1999).

[27] Y. ZHU (Ed.), Modern techniques for characterizing magnetic materi-

als, Springer, Berlin, 2005, covers many characterization techniques,

including microscopies.

[28] H. HOPSTER, H. P. OEPEN (Eds.), Magnetic Microscopy of Nanostructures,

Springer, 2005.

[29] H. KRONMÜLLER, S. S. P. PARKIN (Eds.), Handbook of magnetism and

advanced magnetic materials, Wiley, 2007, several thousands of pages

of review articles dedicated to many topics in Magnetism. Always

to be checked when you search for something.

[30] J. STÖHR, Exploring the microscopic origin of magnetic anisotropies with X-

raymagnetic circular dichroism (XMCD) spectroscopy, J. Magn. Magn. Mater.

200, 470–497 (1999).

[31] E. BAUER, Low energy electron microscopy, Rep. Prog. Phys. 57, 895–

938 (1994).

[32] E. BAUER, Surface Microscopy with Low Energy Electrons, Springer, New-

York, 2014.

[33] J. VOGEL, S. CHERIFI, S. PIZZINI, F. ROMANENS, J. CAMARERO, F. PETROFF,

S. HEUN, A. LOCATELLI, Layer-resolved imaging of domain wall interactions

in magnetic tunnel junction-like trilayers, J. Phys.: Condens. Matter 19,

476204 (2007).

[34] P. FISCHER, T. EIMÜLLER, G. SCHÜTZ, G. DENBEAUX, A. PEARSON, L. JOHN-

SON, D. ATTWOOD, S. TSUNASHIMA, M. KUMAZAWA, N. TAKAGI, M. KÖHLER,

G. BAYREUTHER, Element-specific imaging ofmagnetic domains at 25 nm spa-

tial resolution using soft x-ray microscopy, Rev. Sci. Instr. 72 (5), 2322 (2001).

[35] R. BELKHOU, S. STANESCU, S. SWARA J, A. BESSON, M. LEDOUX, M. HA JLAOUI,

D. DALLE, HERMES: a soft X-ray beamline dedicated to X-ray microscopy, J.

Synchro. Radiat. 22 (4), 968–979 (2015).

[36] P. EATON, P. WEST, Atomic force microscopy, Oxford, 2010.

[37] R. WIESENDANGER, Spin mapping at the nanoscale and atomic scale, Rev.

Mod. Phys. 81, 1495 (2009).



172 BIBLIOGRAPHY

[38] W. WULFHEKEL, J. KIRSCHNER, Spin-polarized scanning tunneling microscopy

on ferromagnets, Appl. Phys. Lett. 75 (13), 1944 (1999).

[39] J. A. FISCHER, L. M. SANDRATSKII, S.-H. PHARK, S. OUAZI, A. A. PASA, D. SANDER,

S. S. P. PARKIN, Probing the spinor nature of electronic states in nanosize

non-collinear magnets, Nat. Commun. 7, 13000 (2016).

[40] K. VON BERGMANN, S. HEINZE, M. BODE, E. VEDMEDENKO, G. BIHLMAYER,

S. BLÜGEL, R. WIESENDANGER, Observation of a Complex Nanoscale Magnetic

Structure in a Hexagonal Fe Monolayer, Phys. Rev. Lett. 96, 167203 (2006).

[41] L. GERHARD, T. K. YAMADA, T. BALASHOV, A. F. TAKACS, R. J. H. WESSELINK,

M. DANE, M.FECHNER, S. OSTANIN, A. ERNST, I. MERTIG, W. WULFHEKEL, Electri-

cal Control of the Magnetic State of Fe, IEEE Trans. Magn. 47 (6), 1619 (2011).

[42] M. S. GRINOLDS, S. HONG, P. MALETINSKY, L. LUAN, M. D. LUKIN,

R. L.WALSWORTH, A. YACOBY, Nanoscalemagnetic imaging of a single electron

spin under ambient conditions, Nat. Phys. 9, 215 (2013).

[43] O. FRUCHART, A. MASSEBOEUF, J. C. TOUSSAINT, P. BAYLE-GUILLEMAUD, Growth

andmicromagnetism of self-assembled epitaxial fcc(111) cobalt dots, J. Phys.:

Condens. Matter 25, 496002 (2013).

[44] T. TANIGAKI, Y. TAKAHASHI, T. SHIMAKURA, T. AKASHI, R. TSUNETA, A. SUGAWARA,

D. SHINDO, Three-Dimensional Observation of Magnetic Vortex Cores in

Stacked Ferromagnetic Discs, Nano Lett. 15, 1309 (2015).

[45] R. ALLENSPACH, Modern Techniques for Characterizing Magnetic Materials,

Kluwer, Boston, 2005, Ch. Spin-polarized microscopy scanning electron

microscopy, pp. 327–360.

[46] G. STEIERL, G. LIU, D. IORGOV, J. KIRSCHNER, Surface domain imaging in

external magnetic fields, Rev. Sci. Instr. 73 (12), 4264 (2002).

[47] R. FRÖMTER, H. P. OEPEN, J. KIRSCHNER, A miniaturized detector for high-

resolution SEMPA, Appl. Phys. A 76, 869–871 (2003).

[48] E. BAUER, Modern Techniques for Characterizing Magnetic Materials,

Kluwer, Boston, 2005, Ch. Spin-polarized low energy electron microscopy

(SPLEEM), pp. 361–379.

[49] N. ROUGEMAILLE, A. K. SCHMID, Magnetic imaging with spin-polarized low-

energy electron microscopy, Europhys. J.: Appl. Phys. 50, 20101 (2010).

[50] F. BLOCH, Zur Theorie der Austauschproblems und der Remanenzerschein-

ung der Feromagnetika, Z. Phys. 74, 295 (1932).

[51] G. A. T. ALLAN, Critical temperatures of Ising Lattice Films, Phys. Rev. B 1 (1),

352–357 (1970).



BIBLIOGRAPHY 173

[52] U. GRADMANN, Magnetism in ultrathin transition metal films, in: K. H. J.

BUSCHOW (Ed.), Handbook of magnetic materials, Vol. 7, Elsevier Science

Publishers B. V., North Holland, 1993, Ch. 1, pp. 1–96, review: Magnetic

fundamental properties in continuous thin films: methods,

magnetic anisotropy, temperature dependance of magnetization,

ground state properties (interface magnetization), metastable

phases.

[53] L. ONSAGER, Crystal Statistics. I. A Two-Dimensional Model with an Order-

Disorder Transition, Phys. Rev. 65, 117–149 (1944).

[54] H. E. STANLEY, T. A. KAPLAN, Possibility of a Phase Transition for the Two-

Dimensional Heisenberg Model, Phys. Rev. Lett. 17, 913 (1966).

[55] R. P. ERIKSON, D. L. MILLS, Anisotropy-driven long-range order in ultrathin

ferromagnetic films, Phys. Rev. B 43, 11527 (1988).

[56] P. GAMBARDELLA, A. DALLMEYER, K. MAITI, M. C. MALAGOLI, W. EBERHARDT,

K. KERN, C. CARBONE, Ferromagnetism in one-dimensional monoatomic

metal chains, Nature 416, 301–304 (2002).

[57] J. BANSMANN, S. BAKER, C. BINNS, J. BLACKMAN, J.-P. BUCHER, J. DORANTES-

DÀVILA, V. DUPUIS, L. FAVRE, D. KECHRAKOS, A. KLEIBERT, K.-H. MEIWES-BROER,

G. M. PASTOR, A. PEREZ, O. TOULEMONDE, K. N. TROHIDOU, J. TUAILLON, Y. XIE,

Magnetic and structural properties of isolated and assembled clusters,

Surf. Sci. Rep. 56, 189–275 (2005), review of a European project on the

subject, mainly focused on clusters.

[58] A. J. COX, J. G. LOUDERBACK, L. A. BLOOMFIELD, Experimental observation of

magnetism in rhodium clusters, Phys. Rev. Lett. 71 (6), 923–926 (1993).

[59] A. J. COX, J. G. LOUDERBACK, S. E. APSEL, L. A. BLOOMFIELD, Magnetism in 4d-

transition metal clusters, Phys. Rev. B 49 (17), 12295–12298 (1994).

[60] U. GRADMANN, J. MÜLLER, Flat ferromagnetic exitaxial 48Ni/52Fe(111) films of

few atomic layers, Phys. Stat. Sol. 27, 313 (1968).

[61] M. T. JOHNSON, P. J. H. BLOEMEN, F. J. A. DEN BROEDER, J. J. DE VRIES, Magnetic

anisotropy in metallic multilayers, Rep. Prog. Phys. 59, 1409–1458 (1996).

[62] M. DUMM, B. UHL, M. ZÖLFL, W. KIPFERL, G. BAYREUTHER, Volume and interface

magnetic anisotropy of Fe1−xCox thin films on GaAs(001), J. Appl. Phys. 91 (10),
8763 (2002).

[63] D. T. D. LACHEISSERIE, Magnetostriction - Theory and Applications of Magne-

toelasticity, CRC Press, 1993.



174 BIBLIOGRAPHY

[64] W. A. JESSER, D. KUHLMANN-WILSDORF, On the theory of interfacial energy

and elastic strain of epitaxial overgrowth in parallel alignment on single

crystal substrates, Phys. Stat. Sol. 19 (1), 95–105 (1967), first model for 1/t
strain relaxation in thin films related to misfit dislocations.

[65] C. CHAPPERT, P. BRUNO, Magnetic anisotropy in metallic ultrathin films

and related experiments on cobalt films, J. Appl. Phys. 64 (10), 5336–

5341 (1988), first application of the theory of strain relaxation

in thin films to the ambiguity if interface and magnetoelastic

anisotropy.

[66] D. SANDER, R. SKOMSKI, A. ENDERS, C. SCHMIDTHALS, D. REUTER, J. KIRSCHNER,

The correlation between mechanical stress and magnetic properties of

ultrathin films, J. Phys. D: Appl. Phys. 31, 663–670 (1998).

[67] G. BERTOTTI, I. D. MAYERGOYZ, C. SERPICO, M. DIMIAN, Comparison of ana-

lytical solutions of Landau-Lifshitz equation for ’damping’ and ’precessional’

switchings, J. Appl. Phys. 93 (10), 6811–6813 (2003).

[68] C. CHAPPERT, H. BARNAS, J. FERRÉ, V. KOTTLER, J.-P. JAMET, Y. CHEN, E. CAMBRIL,

T. DEVOLDER, F. ROUSSEAUX, V. MATHET, H. LAUNOIS, Planar patterned mag-

netic media obtained by ion irradiation, Science 280, 1919–1922 (1998).

[69] L. NÉEL, énergie des parois de Bloch dans les couches minces, C. R. Acad.

Sci. 241 (6), 533–536 (1955).

[70] K. RAMSTÖCK, W. HARTUNG, A. HUBERT, The phase diagram of domain walls

in narrow magnetic strips, Phys. Stat. Sol. (a) 155, 505 (1996).

[71] A. E. LABONTE, Two-dimensional Bloch-type domain walls in ferromagnetic

thin films, J. Appl. Phys. 40 (6), 2450–2458 (1969).

[72] A. HUBERT, Stray-field-free magnetization configurations, Phys. Stat. Sol.

32 (519), 519–534 (1969).

[73] S. FOSS, R. PROKSCH, E. DAHLBERG, B. MOSKOWITZ, B. WALSCH, Localized

micromagnetic perturbation of domain walls in magnetite using a magnetic

force microscope, Appl. Phys. Lett. 69 (22), 3426–3428 (1996).

[74] H. JOISTEN, S. LAGNIER, M. VAUDAINE, L. VIEUX-ROCHAZ, J. PORTESEIL, A mag-

netic force microscopy and Kerr effect study of magnetic domains and

cross-tie walls in magnetoresistive NiFe shapes, J. Magn. Magn. Mater. 233,

230 (2001).

[75] W. DÖRING, Point singularities in micromagnetism, J. Appl. Phys. 39 (2),

1006 (1968).

[76] C. KITTEL, Physical theory of ferromagnetic domains, Rev. Mod. Phys. 21 (4),

541–583 (1949).



BIBLIOGRAPHY 175

[77] H. A. M. VAN DEN BERG, A micromagnetic approach to the constitutive

equation of soft-ferromagnetic media, J. Magn. Magn. Mater. 44 (1-2), 207–

215 (1984).

[78] H. A. M. VAN DEN BERG, Self-consistent domain theory in soft-ferromagnetic

media. II. Basic domain structures in thin-film objects, J. Appl. Phys. 60,

1104 (1986).

[79] R. DANNEAU, P. WARIN, J. P. ATTANÉ, I. PETE J, C. BEIGNÉ, C. FERMON, O. KLEIN,

A. MARTY, F. OTT, Y. SAMSON, M. VIRET, Individual Domain Wall Resistance in

Submicron Ferromagnetic Structures, Phys. Rev. Lett. 88 (15), 157201 (2002).

[80] M. HEHN, K. OUNADJELA, J. P. BUCHER, F. ROUSSEAUX, D. DECANINI, B. BARTEN-

LIAN, C. CHAPPERT, Nanoscale Magnetic Domains in Mesoscopic Magnets,

Science 272, 1782–1785 (1996).

[81] M. DONAHUE, D. PORTER, Interagency Report NISTIR 6376, Tech. rep., Na-

tional Institute of Standards and Technology, Gaithersburg, MD (1999).

[82] http://math.nist.gov/oommf/.

URL http://math.nist.gov/oommf/

[83] P. O. JUBERT, R. ALLENSPACH, Analytical approach to the single-domain-to-

vortex transition in small magnetic disks, Phys. Rev. B 70, 144402/1–5 (2004).

[84] A. THIAVILLE, D. TOMAS, J. MILTAT, On Corner Singularities in Micromagnetics,

Phys. Stat. Sol. 170, 125 (1998).

[85] W. RAVE, K. RAMSTÖCK, A. HUBERT, Corners and nucleation in micromagnet-

ics, J. Magn. Magn. Mater. 183, 329–333 (1998).

[86] M. A. SCHABES, H. N. BERTRAM, Magnetization processes in ferromagnetic

cubes, J. Appl. Phys. 64 (3), 1347–1357 (1988).

[87] R. P. COWBURN, M. E. WELLAND, Analytical micromagnetics of near single

domain particles, J. Appl. Phys. 86 (2), 1035–1040 (1999).

[88] R. DITTRICH, A. THIAVILLE, J. MILTAT, T. SCHREFL, Rigorous micromagnetic

computation of configurational anisotropy energies in nanoelements, J.

Appl. Phys. 93 (10), 7891–7893 (2003).

[89] A. FERT, J. L. PIRAUX, Magnetic nanowires, J. Magn. Magn. Mater. 200, 338–

358 (1999).

[90] R. MCMICHAEL, M. DONAHUE, Head to Head Domain Wall Structures in Thin

Magnetic Strips, IEEE Trans. Magn. 33, 4167 (1997).

[91] E. C. STONER, E. P. WOHLFARTH, A Mechanism of Magnetic Hysteresis in

Heterogeneous Alloys, Phil. Trans. Roy. Soc. Lond. A 240, 599–642 (1948).

http://math.nist.gov/oommf/


176 BIBLIOGRAPHY

[92] E. C. STONER, E. P. WOHLFARTH, reprint of 1948 ’AMechanism ofMagnetic Hys-

teresis in Heterogeneous Alloys’, IEEE Trans. Magn. 27 (4), 3469–3518 (1991).

[93] J. C. SLONCZEWSKI, Theory of magnetic hysteresis in films and its applications

to computers, Tech. Rep. RM 003.111.224, IBM Research Center, Poughkeep-

sie, NY (1956).

[94] A. THIAVILLE, Extensions of the geometric solution of the two dimensional

coherent magnetization rotation model, J. Magn. Magn. Mater. 182, 5–

18 (1998).

[95] B. BORCA, O. FRUCHART, C. MEYER, Magnetic properties of self-organized

lateral arrays of (Fe,Ag)/Mo(110) nanostripes, J. Appl. Phys. 99, 08Q514 (2005).

[96] O. FRUCHART, P. O. JUBERT, C. MEYER, M. KLAUA, J. BARTHEL, J. KIRSCHNER,

Vertical self-organization of epitaxial magnetic nanostructures, J. Magn.

Magn. Mater. 239, 224–227 (2002).

[97] A. TAMION, M. HILLENKAMP, F. TOURNUS, E. BONET, V. DUPUIS, Accurate deter-

mination of the magnetic anisotropy in cluster-assembled nanostructures,

Appl. Phys. Lett. 95, 062503 (2009).

[98] A. TAMION, E. BONET, F. TOURNUS, C. RAUFAST, A. HILLION, O. GAIER, V. DUPUIS,

Efficient hysteresis loop simulations of nanoparticle assemblies beyond the

uniaxial anisotropy, Phys. Rev. B 85, 134430 (2012).

[99] W. F. J. BROWN, Criterion for uniform micromagnetization, Phys. Rev. 105,

1479 (1957).

[100] E. H. FREI, S. SHTRIKMAN, D. TREVES, Critical Size and Nucleation Field of Ideal

Ferromagnetic Particles, Phys. Rev. 106, 446 (1957).

[101] S. SHTRIKMAN, D. TREVES, The coercive force and rotational hysteresis of

elongated ferromagnetic particles, J. Phys. Rad. 20, 286 (1959).

[102] A. AHARONI, Angular dependence of nucleation by curling in a prolate

spheroid, J. Appl. Phys. 82, 1281 (1997).

[103] W. C. UHLIG, J. SHI, Systematic study of the magnetization reversal in pat-

terned Co and NiFe Nanolines, Appl. Phys. Lett. 84 (5), 759 (2004).

[104] K. J. KIRK, J. N. CHAPMAN, C. D. W. WILKINSON, Switching fields and magne-

tostatic interactions of thin film magnetic nanoelements, Appl. Phys. Lett.

71 (4), 539–541 (1997).

[105] R. P. COWBURN, D. K. KOLTSOV, A. O. ADEYEYE, M. E. WELLAND, Lateral interface

anisotropy in nanomagnets, J. Appl. Phys. 87 (9), 7067 (2000).

[106] P. BRYANT, H. SUHL, Thin-film magnetic patterns in an external field, Appl.

Phys. Lett. 54, 78 (1989).



BIBLIOGRAPHY 177

[107] P. BRYANT, H. SUHL, Micromagnetic below saturation, J. Appl. Phys. 66,

4329 (1989).

[108] A. DESIMONE, R. V. KOHN, S. MÜLLER, F. OTTO, R. SCHÄFER, Two-dimensional

modeling of soft ferromagnetic films, Proc. Roy. Soc. Lond. A 457, 2983–

2991 (2001).

[109] A. DESIMONE, R. V. KOHN, S. MÜLLER, F. OTTO, R. SCHÄFER, Low energy domain

patterns in soft ferromagnetic films, J. Magn. Magn. Mater. 242-245, 1047–

1051 (2002).

[110] A. DESIMONE, R. V. KOHN, S. MÜLLER, F. OTTO, A reduced theory for thin-film

micromagnetics, Comm. Pure Appl. Math. 55 (11), 1408–1460 (2002).

[111] P. O. JUBERT, J. C. TOUSSAINT, O. FRUCHART, C. MEYER, Y. SAMSON, Flux-closure-

domain states and demagnetizing energy determination in sub-micron size

magnetic dots, Europhys. Lett. 63 (1), 132–138 (2003).

[112] M. T. BRYAN, D. ATKINSON, R. P. COWBURN, Experimental study of the influ-

ence of edge roughness on magnetization switching in Permalloy nanos-

tructures, Appl. Phys. Lett. 85 (16), 3510 (2004).

[113] F. CAYSSOL, D. RAVELOSONA, C. CHAPPERT, J. FERRÉ, J. P. JAMET, Domain Wall

Creep in Magnetic Wires, Phys. Rev. Lett. 92, 107202 (2004).

[114] R. D. MCMICHAEL, J. EICKE, M. J. DONAHUE, D. G. PORTER, Domain wall traps for

low-field switching of submicron elements, J. Appl. Phys. 87 (9), 7058 (2000).

[115] T. TANIYAMA, I. NAKATANI, T. YAKABE, Y. YAMAZAKI, Control of domain structures

and magnetotransport properties in patterned ferromagnetic wires, Appl.

Phys. Lett. 76 (5), 613 (2000).

[116] K. SHIGETO, T. SHINJO, T. ONO, Injection of a magnetic domain wall into a

submicron magnetic wire, Appl. Phys. Lett. 75 (18), 2815 (1999).

[117] Y. YOKOYAMA, Y. SUZUKI, S. YUASA, K. ANDO, K. SHIGETO, T. SHINJO, P. GOGOL,

J. MILTAT, A. THIAVILLE, T. ONO, T. KAWAGOE, Kerr microscopy observations of

magnetization process inmicrofabricated ferromagnetic wires, J. Appl. Phys.

87 (9), 5618 (2000).

[118] L. THOMAS, R. MORIYA, C. RETTNER, S. S. P. PARKIN, Dynamics of Magnetic

Domain Walls Under Their Own Inertia, Science 330, 1810 (2010).

[119] S. MIDDELHOEK, Domain Walls in Thin Ni-Fe Films, J. Appl. Phys. 34 (4), 1054–

1059 (1963).

[120] A. V. POHM, C. S. COMSTOCK, 0.75, 1.25 and 2.0 µm wide M-R transducers, J.
Magn. Magn. Mater. 54, 1667–1669 (1986).



178 BIBLIOGRAPHY

[121] A. V. POHM, J. M. DAUGHTON, C. S. COMSTOCK, H. Y. YOO, J. HUR, Threshold

properties of 1, 2 and 4 µm multilater M-R memory cells, IEEE Trans. Magn.
23, 2575–2577 (1987).

[122] A. V. POHM, J. M. DAUGHTON, K. E. SPEARS, A high output mode for submicron

M-R memory cells, IEEE Trans. Magn. 28, 2356–2358 (1992).

[123] N. KIKUCHI, S. OKAMOTO, O. KITAKAMI, Y. SHIMADA, Vertical bistable switching

of spin vortex in a circular magnetic dot, J. Appl. Phys. 90 (12), 6548 (2001).

[124] A. THIAVILLE, J. M. GARCÌA, R. DITTRICH, J. MILTAT, T. SCHREFL, Micromag-

netic study of Bloch-point-mediated vortex core reversal, Phys. Rev. B 67,

094410 (2003).

[125] F. CHEYNIS, A. MASSEBOEUF, O. FRUCHART, N. ROUGEMAILLE, J. C. TOUSSAINT,

R. BELKHOU, P. BAYLE-GUILLEMAUD, A. MARTY, Controlled Switching of Néel

Caps in Flux-Closure Magnetic Dots, Phys. Rev. Lett. 102, 107201 (2009).

[126] R. BECKER, Elastic tensions and magnetic characteristics, Phys. ZS

33, 905 (1932), first mention of connexion of coercivity to pinning

forces related to inhomogenities of strain.

[127] E. KONDORSKI, On the nature of coercive force and irreversible changes in

magnetisation, Phys. Z. Sowjetunion 11, 597 (1937).

[128] A. A. IVANOV, V. A. ORLOV, A Comparative Analysis of the Mechanisms of

Pinning of a Domain Wall in a Nanowire, Phys. Sol. State 53 (12), 2441 (2011).

[129] A. AHARONI, Reduction in Coercive Force Caused by a Certain Type of

Imperfection, Phys. Rev. 119 (1), 127–131 (1960).

[130] G. W. RATHENAU, J. SMIT, A. L. STUYTS, Ferromagnetic properties of hexagonal

iron-oxide compounds with and without a preferred orientation, Z. Phys.

133, 250 (1952), local region with zero anisotropy in the framework

of a Kondorski model. Comes prior to AHA1960, however just value

of nucleation field, not shape of wall.

[131] D. SUESS, J. FIDLER, G. ZIMANYI, T. SCHREFL, P. VISSCHER, Thermal stability of

graded exchange spring media under the influence of external fields, Appl.

Phys. Lett. 92, 173111 (2008).

[132] R. H. VICTORA, Predicted time dependence of the switching field formagnetic

materials, Phys. Rev. Lett. 63, 457–460 (1989).

[133] G. D. CHAVES-O’FLYNN, G. WOLF, J. Z. SUN, A. D. KENT, Thermal Stability of

Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicu-

lar Magnetic Anisotropy, Phys. Rev. Appl. 4 (2), 024010 (2015).



BIBLIOGRAPHY 179

[134] O. FRUCHART, J.-P. NOZIÈRES, W. WERNSDORFER, D. GIVORD, F. ROUSSEAUX,

D. DECANINI, Enhanced coercivity in sub-micrometer-sized ultrathin epitaxial

dots with in-plane magnetization, Phys. Rev. Lett. 82 (6), 1305–1308 (1999).

[135] O. FRUCHART, J. C. TOUSSAINT, B. KEVORKIAN, Micromagnetic model of non-

collective magnetization reversal in ultrathin magnetic dots with in-plane

uniaxial anisotropy, Phys. Rev. B 63 (17), 174418 (2001).

[136] S. LEMERLE, J. FERRÉ, C. CHAPPERT, V. MATHET, T. GIAMARCHI, P. L. DOUSSAL,

Domain Wall Creep in an Ising Ultrathin Magnetic Film, Phys. Rev. Lett. 80,

849–842 (1998).

[137] G. HERZER, Grain size dependence of coercivity and permeability in

nanocrystalline ferromagnets, IEEE Trans. Magn. 26 (5), 1397 (1990).

[138] G. HERZER, Nanocrystalline soft magnetic materials, J. Magn. Magn. Mater.

112, 258–262 (1992).

[139] R. BECKER, W. DÖRING, Ferromagnetismus, Springer, 1939, first model of

strong pinning of a Bloch domain will a delta-like defect.

[140] D. D. STANCIL, A. PRABHAKAR, Spin waves. Theory and applications, Springer,

New-York, 2009.

[141] J. H. E. GRIFFITHS, Anomalous high-frequency resistance of ferromagnetic

materials, Nature 158, 670 (1946), first report of FMR in ferromagnetic

bodies.

[142] C. KITTEL, Interpretation of Anomalous Larmor Frequencies in Ferromag-

netic Resonance Experiment, Phys. Rev. 71 (4), 270–271 (1947).

[143] J. SMIT, H. G. BELJERS, Philips Res. Rep. 10, 113 (1955).

[144] L. BASELGIA, M. WARDEN, F. WALDNER, S. L. HUTTON, J. E. DRUMHELLER, Y. Q.

HE, P. E. WIGEN, M. MARYSKO, Derivation of the resonance frequency from

the free energy of ferromagnets, Phys. Rev. B 38 (4), 2237 (1988).

[145] M. FARLE, Ferromagnetic resonance of ultrathin metallic layers, Rep. Prog.

Phys. 61, 755–826 (1998), review: methods, theory and experiments

(anisotropy, magnetic order).

[146] M. BAILLEUL, D. OLLIGS, C. FERMON, Propagating spin wave spectroscopy in a

permalloy film: A quantitative analysis, Appl. Phys. Lett. 83 (5), 972 (2003).

[147] D. A. GARANIN, Fokker-Planck and Landau-Lifshitz-Bloch equations for clas-

sical ferromagnets, Phys. Rev. B 55, 3050 (1997).



180 BIBLIOGRAPHY

[148] I. RADU, K.VAHAPLAR, C. STAMM, T.KACHEL, N. PONTIUS, H. , T. A. OSTLER,

J. BARKER, R. L. EVANS, R. W. CHANTRELL, A. TSUKAMOTO, A. ITOH, A. KIRILYUK,

T. RASING, A. V. KIMEL, Transient ferromagnetic-like state mediating ultrafast

reversal of antiferromagnetically coupled spins, Nature 472, 205 (2011).

[149] C. H. BACK, R. ALLENSPACH, W. WEBER, S. S. P. PARKIN, D. WELLER, E. L. GARWIN,

H. C. SIEGMANN, Minimum Field Strength in Precessional Magnetization

Reversal, Science 285, 864–867 (1999).

[150] C. SERPICO, I. D. MAYERGOYZ, G. BERTOTTI, Analytical solutions of Landau-

Lifshitz equation for precessional switching, J. Appl. Phys. 93 (10), 6909–

6911 (2003).

[151] T. DEVOLDER, C. CHAPPERT, Precessional switching of thin nanomagnets:

analytical study, Europhys. J. B 36, 57–64 (2003), a step-by-step paper on

the analytical description of precessional switching. Written by

experimentalists, easy to read.

[152] M. BAUER, J. FASSBENDER, B. HILLEBRANDS, Switching behavior of a Stoner

particle beyond the relaxation time limit, Phys. Rev. B 61 (5), 3410 (2000).

[153] H. FORSTER, T. SCHREFL, W. SCHOLZ, D. SUESS, V. TSIANTOS, J. FIDLER, Micromag-

netic simulation of domain wall motion in magnetic nano-wires, J. Magn.

Magn. Mater. 249, 181 (2002).

[154] R. HERTEL, Computational micromagnetism of magnetization processes in

nickel nanowires, J. Magn. Magn. Mater. 249, 251 (2002).

[155] N. BIZIERE, C. GATEL, R. LASSALLE-BALIER, M. C. CLOCHARD, J. E. WEGROWE,

E. SNOECK, Imaging the Fine Structure of a Magnetic Domain Wall in a Ni

Nanocylinder, Nano Lett. 13, 2053 (2013).

[156] S. DA COL, S. JAMET, N. ROUGEMAILLE, A. LOCATELLI, T. O. MENTES, B. S. BURGOS,

R. AFID, M. DARQUES, L. CAGNON, J. C. TOUSSAINT, O. FRUCHART, Observation

of Bloch-point domain walls in cylindrical magnetic nanowires, Phys. Rev. B

89, 180405 (2014).

[157] N. L. SCHRYER, L. R. WALKER, The motion of 180ř domain walls in uniform dc

magnetic fields, J. Appl. Phys. 45 (12), 5406–5421 (1974).

[158] A. THIAVILLE, Y. NAKATANI, Spin dynamics in confined magnetic structures

III, Vol. 101 of Topics Appl. Physics, Springer, Berlin, 2006, Ch. Domain-wall

dynamics in nanowires and nanostrips, pp. 161–206.


	Introduction
	Content
	Notations
	Formatting

	I Setting the ground for nanomagnetism
	1 Magnetic fields and magnetic materials
	1.1 Magnetic fields
	1.2 Magnetic materials
	1.3 Magnetic materials under field – The hysteresis loop
	1.4 Domains and domain walls

	2 Units in Magnetism
	3 The various types of magnetic energy
	3.1 Introduction
	3.2 Zeeman energy
	3.3 Magnetic anisotropy energy
	3.4 Exchange energy
	3.5 Magnetostatic energy
	3.6 Characteristic quantities

	4 Handling dipolar interactions
	4.1 Simple views on dipolar interactions
	4.2 Various ways to handle magnetostatics
	4.3 Demagnetizing factors

	5 The Bloch domain wall
	5.1 Simple variational model
	5.2 Exact model
	5.3 Defining the width of a domain wall

	6 Magnetometry and magnetic imaging
	6.1 Extraction and vibrating magnetometers
	6.2 Faraday and Kerr effects
	6.3 X-ray Magnetic Dichroism techniques
	6.4 Scanning probe microscopies
	6.5 Electron microscopies

	Problems for Chapter I
	1. Self-testing
	2. Short questions
	3. Demagnetizing coefficients of composite materials
	4. More about units
	5. More about the Bloch domain wall
	6. Extraction and vibration magnetometer
	7. Magnetic force microscopy


	II Magnetism and magnetic domains in low dimensions
	1 Magnetic ordering in low dimensions
	1.1 Ordering temperature
	1.2 Ground-state magnetic moment

	2 Magnetic anisotropy in low dimensions
	2.1 Dipolar anisotropy
	2.2 Projection of magnetocrystalline anisotropy due to dipolar energy
	2.3 Interface magnetic anisotropy
	2.4 Magnetoelastic anisotropy

	3 Domains and domain walls in thin films
	3.1 Bloch versus Néel domain walls
	3.2 Domain wall angle
	3.3 Composite domain walls
	3.4 Vortices and antivortex
	3.5 Films with an out-of-plane anisotropy

	4 Domains and domain walls in nanostructures
	4.1 Domains in nanostructures with in-plane magnetization
	4.2 Domains in nanostructures with out-of-plane magnetization
	4.3 The critical single-domain size
	4.4 Near-single-domain
	4.5 Domain walls in strips and wires

	5 An overview of characteristic quantities
	5.1 Energy scales
	5.2 Length scales
	5.3 Dimensionless ratios

	Problems for Chapter II
	1. Self-testing
	2. Short questions
	3. Demagnetizing field in a strip
	4. Three-dimensional micromagnetics: a magnetic nanotube


	4.3.a. Longitudinal magnetization
	4.3.b. Azimuthal magnetization
	4.3.c. Radial magnetization
	5. The Dzyaloshinskii-Moriya interaction and chiral magnetic structures

	III Magnetization reversal
	1 Macrospins - The case of uniform magnetization
	1.1 The Stoner-Wohlfarth model
	1.2 Dynamic coercivity: effects of temperature and waiting time
	1.3 The superparamagnetic regime
	1.4 What do we learn from dynamic coercivity and superparamagnetism?
	1.5 Ensembles of grains

	2 Magnetization reversal in nanostructures
	2.1 Near single domains
	2.2 Large elements of soft magnetic material
	2.3 Motion of domain walls in one-dimensional elements
	2.4 Magnetization processes inside domain walls and vortices

	3 Magnetization reversal in extended systems
	3.1 Description of the question at stake
	3.2 Zero-temperature views
	3.3 Activation volume
	3.4 Practical cases and models

	Problems for Chapter III
	1. Self-testing
	2. Short questions
	3. Herzer model for coercivity in nanocrystalline materials
	4. A model of pinning - Kondorski's law for coercivity
	5. Droplet model for nucleation


	IV Precessional dynamics of magnetization
	1 Ferromagnetic resonance and Landau-Lifshitz-Gilbert equation
	1.1 Precession
	1.2 Ferromagnetic resonance
	1.3 Damping and Landau-Lifshitz equations
	1.4 Spin waves

	2 Precessional switching of macrospins driven by magnetic fields
	2.1 The role of shape anisotropy
	2.2 Setting-in in-plane uniaxial anisotropy
	2.3 Practical conditions: finite damping and pulse length

	3 Precessional motion of domain walls and vortices driven by a magnetic field
	3.1 Domain walls – The case of azimuthal isotropy
	3.2 Domain walls – The case of azimuthal anisotropy

	Problems for Chapter IV
	1. Self-testing
	2. Short questions
	3. Effective fields
	4. Precessional switching of magnetization
	5. Damping


	Appendices
	Symbols
	Acronyms
	Glossary

	Bibliography

