Nanomagnetism

Part 2 — Domains and domain walls

S Olivier Fruchart
Eé-é Institut Néel (Univ. Grenoble Alpes — CNRS)

Grenoble - France
institut

http://neel.cnrs.fr

Micro-NanoMagnetism team : http://neel.cnrs.fr/mnm

Institut Néel, Grenoble, France.

http://perso.neel.cnrs.fr/olivier.fruchart/

GRENOBLE


http://neel.cnrs.fr/
http://neel.cnrs.fr/mnm

General table of contents _

Z> Part 1 : basics of micromagnetism —
Simple models of magnetization reversal

Z> Part 2 : non-uniform magnetization in
nanostructure: domains, domain walls

Z> Part 3 : Low-dimensions,
interfaces and heterostructures

Z> Part 4 : Learn from
hysteresis loops

éiéz Institut Néel Olivier Fruchart - IEEE Magnetics 7™ School - Rio, Aug 2014 - p.II-2

imtue Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

> Brown paradox

= Nucleation and propagation

| ©Walls and domains in films and nanostructures

—> Near single domains
R ¥ —> Domain walls in tracks

I j| > Skyrmions

éﬁéz Institut Néel Olivier Fruchart - IEEE Magnetics 7™ School - Rio, Aug 2014 - p.II-3

imetue Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Brown paradox -
Theory, ‘Astroid’ curve

2K 2K
R B Ly H= Ho< o

120

Known as Brown paradox

150 W. F. Brown, Jr.,

Micromagnetics (Wiley, New York, 1963)
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% Non-uniform distributions of magnetization

S Origin may be intrinsic (eg shape) or extrinsic (defect)
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Pt.11 : DOMAINS and DOMAIN WALLS — From bulk to single-domain

Bulk material Mesoscopic scale Nanometric scale

Numerous and complex Small number of domains, Magnetic
magnetic domains simple shape single-domain

FeSi soft sheet Microfabricated dots Nanofabricated dots

Kerr magnetic imaging MFM
A. Hubert, Magnetic domains A. Hubert, Magnetic domains I. A. Chioar, PRB90,

064411 (2014)

& Domain walls play a crucial role in magnetization processes

% Domain walls define length scales
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Pt.11 : DOMAINS and DOMAIN WALLS — Magnetic length scales

Anisotropy exchange length
E=A(0,0+K sin"0

| Exchange | Anisotropy
J/m J/m?

Dipole

Often called Bloch parameter
or domain-wall width

W Domain Wall Width
Atomic g g /

EEL Institut Néel

Anisotropy exchange lengthA =V A/K

A,~1nm = A,>100 nm
Hard Soft

Dipolar exchange length

E=A(0,0]+K,sin"0

Exchange I Dipolar energy
J/m J/m’
1 2
KdZEMoMS
Dipolar exchange length:

:\/QA/MOM

A4~3—10 nm

Single-domain critical size
relevant for nanoparticules
made of soft magnetic material

‘<<2> Often called Exchange

length

Notice:
Other length scales: with field etc.
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Pt.11 : DOMAINS and DOMAIN WALLS — Simple model for a domain wall

Linear model Feature of domain walls

Linear Exact

Naive however provides all physics

I sl e Width |A,=nvV2VA/K, Ayw=nVA/K,

Energy (‘5:75\6\/AKU &=4VAK
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(E,)=K (cos 8)=K /2 i I
Distance (in A units)

Domain walls and coercivity
& Soliton-like propagation : no deformation, requires no energy (NB : under quasistatic conditions)

L Contribution to coercivity requires geometrical or material inhomogenities

éﬁéz Institut Néel Olivier Fruchart - IEEE Magnetics 7™ School - Rio, Aug 2014 - p.II-7

imtwe Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.1l : DOMAINS and DOMAIN WALLS — Nucleation and propagation (1/3

Micromagnetic modeling

Brown’s paradox

In most systems  H_ <<£ Exhibit analytic hovyevgr realistic
w, M g models for magnetization reversal
PHYSICAL REVIEW VOLUME 119, NUMBER 1 JULY 1. 1960

Reduction in Coercive Force Caused by a Certain Type of Imperfection

A, AHARONI
Department of Electronics, The Weizmann Institute of Science, Rehovot, Israel

(Received February 1, 1960)

As a first approach to the study of the dependence of the coercive force on imperfections in materials
which have high magnetocrystalline anisotropy, the following one-dimensional model is treated. A material
which is infinite in all directions has an infinite slab of finite width in which the anisotropy is 0. The coercive
force is calculated as a function of the slab width. It is found that for relatively small widths there is a con-
siderable reduction in the coercive force with respect to perfect material, but reduction saturates rapidly

so that it is never by more than a factor of 4. Lo :
' I I I
A ® 1 051
¥
KO N
} . 0.25
I 0.2+ N ]
hY
. \\
Nucleation ™\
% 0.2 0.5 L0 2.0 50 100 200
dVRK/A —
0 ! F16. 1. The nucleation field (dashed) and coercive force (full
A curve) in terms of the coercive force of perfect material, HI,/2K,
-d d as functions of the defect size, d.
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Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

—> Brown paradox

L éj T =>Nucleation and propagation

| ©Walls and domains in films and nanostructures

—> Near single domains
R ¥ —> Domain walls in tracks

= Skyrmions
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Pt.11 : DOMAINS and DOMAIN WALLS — Nucleation and propagation

Coercivity determined by nucleation Coercivity determined by propagation

P Hili

=> Physics has some similarity = Physics of surface/string in
with that of grains heterogeneous landscape
=> Concept of nucleation volume => Modeling necessary
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Pt.11 : DOMAINS and DOMAIN WALLS — Nucleation and propagation (3/3

Activation volume

Also called; nucleation volume

Can be used for:

= Estimating Hc(T)
> Estimating long-time relaxation
= Determination of dimensionality

Note: of the order of domain wall width ¢

10 .
§ Pr_Fe B,
© 61
S © Courtesy
4] D. Givord
O
2_ O
0000000 O P
O
0

O [T00 200 | 300 400| 500
T(K)
More detailed models:
D. Givord et al., JMMM258, 1 (2003)

1/cosO law

E. J. Kondorsky, J. Exp. Theor. Fiz. 10, 420 (1940)

Hypothesis:

> Based on
nucleation volume

= Hc<<Ha

H

Energy barrier E,

overcome by gain in
Zeeman energy plus
thermal energy

M

E,=—u,Msv,HcosO,+25k, T

FERRITE

30 60 90 120

D. Givord et al., IMMM72, 247 (1988)
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Pt.Il : DOMAINS and DOMAIN WALLS — Nucleation and propagation, films (1/3
AT ARSIV Fatuzzo/Labrune/Raguet model

dN=(N,-N|Rdt

B N=N,[1—exp(—Rt)

N: number of nucleated centers at time ¢

N,: total number of possible nucleation centers
R: rate of nucleation

Radial expansion of existing domains
On=0—0 = (,Doz/T) [ﬁ[}—f—*ﬁ]z“-'?r?’ cQ/T r.: radius of critical nucleus
T total area of sample
t1dN T & ]
A= ( ) (Un) s+ N(zﬂ) V,,: speed of propagation of
o \di/, T domain wall
Growth of existing nuclei New nuclei

Combination — Predicts area not yet reversed

ﬂ B(f}=exp(—2k3(1—(ﬁr+k") k.:UO/(ch)
1 2 R » k is a measure of the
+3(Re+ k71 e M (1 -k7T) importance of wall propagation
121 - Rr])), versus nucleation events

E. Fatuzzo, Phys. Rev. 127, 1999 (1962)
Institut Néel
Grenoble, France
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Pt.11 : DOMAINS and DOMAIN WALLS — Nucleation and propagation

Depending on structural defects Depending on measurement dynamics

1.0
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50 _//
Fig. 4. Magnetization versus reduced time rp for a GdFe 50 = 50
sample (k= 2000) and a TbCo one (k= 0), corresponding | i

domain structure observed by Kerr effect.

0 (;ross-over
100 10k 1 1 100 10k 1MI10OM
Field sweep rate dl/dt (Oefs)

M. Labrune et al.,
J. Magn. Magn. Mater. 80, 211 (1989) J. Camarero et al., PRB64, 172402 (2001)

Note also for fast propagation of domain walls: breakdown of propagation speed (Walker)
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Pt.Il : DOMAINS and DOMAIN WALLS — Nucleation and propagation, films (3/3

=> Physics : rope in a 2D Pt/Co/Pt film, perpendicular anisotropy
medium with static disorder 50+ | : :
g : ‘ H—eo
: ; : . A\Y
g 1 A O

=> Energy barriers scale like (1/H)"

—> Domain wall speed determined by
Arrhenius law

HL T il
v(H)~exp|-pU,| —
H
S. Lemerle et al., PRB80, 849 (1998) .25 e e e

1 1.2 14 16 1.8 2 2.2 2.4

1/4

(1/H)! " koe 'Y




Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

—> Brown paradox
= Nucleation and propagation

=>Walls and domains in films and nanostructures

—> Near single domains

' = Domain walls in tracks

5
o S
le . ©>Skyrmions
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Pt.11 : DOMAINS and DOMAIN WALLS — Flux-closure states (1/6

Bloch versus Néel wall
Crude model: wall is a uniformly-magnetized cylinder with an ellipsoid base

+++4
i “ W
Bloch wall O Y E{~Kj——
X\/Z 2t Thickness t
w Wall width W
. : F t
Néel wall o -G & - Eq~Kagyy

L. Néel, Energie des parois de Bloch dans les couches minces,
C. R. Acad. Sci. 241, 533-536 (1955)

Take-away meessages

S At low thickness (roughly /=~ W) Bloch domain walls are expected to
turn their magnetization in-plane > Néel wall

& Model needs to be refined
& Domain walls not changed for films with perpendicular magnetization
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Pt.11 : DOMAINS and DOMAIN WALLS — Flux-closure states (2/6

Néel caps occur atop Bloch walls to reduce Refined phase diagram of domain walls
surface and volume magnetic charges

M.n=o0
: oM., oM, oM,
—divM=— i
ax oy 0z
Z
SJ T ¢ LXJ

Institut Néel

— — h=HJ/2K,

— D (Nig;Fe9) [nm]
| 5!0 IQO ZQO 375
i L-45°
0.8 -
o 1 Symmetric Asymmetric L 9(° l
| Néel /walls Yall
- angie
9 = = ® T ® §
—> 135°
_ FEor
®
0.21  Cross tie A e e © T«
] PR Bloch walls
0 I 1 ] 1 1 I I I | 1800
1.5 10112 15 (20 25 30 40|50 60 75
——r D/YA/K;
A. Hubert and R. Schafer,
Magnetic domains, Springer (1999)

Olivier Fruchart - IEEE Magnetics 7* School - Rio, Aug 2014 - p.II-17

Grenoble,

France

http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Flux-closure states (3/6

Domain pattern in'asymmetric donut ?
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Pt.11 : DOMAINS and DOMAIN WALLS — Flux-closure states (3/6

WIIUENI  Van den Berg model

Infinitely soft material & me=0 2D geometry (neglect thickness)

Zero external magnetic field & ,=0 Size >> all magnetic length scales (wall width)
5ex_)o

Looking for a solution with : &4=0 —divM=0 (no volume charges)

« Flux closure »
M.n=0 (no surface charges)

H. A. M. Van den Berg, J. Magn. Magn. Mater. 44, 207 (1984)
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Pt.1l : DOMAINS and DOMAIN WALLS — Flux-closure states (4/6

ra

VA ¥4 74 7 »

; Empss / Institut Néel
@IEEE 2ot , E‘“L Grenoble, France
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FEasy axis of weak
magnetocrystalline
anisotropy

Easy axis of weak
magnetocrystalline
anisotropy

Large dots e

= many degres of freedom

= many possible states
= history is important
= even slight perturbations

) ) can influence the dot
A. Hubert, Magnetic domains
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Pt.11 : DOMAINS and DOMAIN WALLS — Flux-closure states (6/6

Microscopic contribution to perpendicular anisotropy

’ LG/ M => Quality factor quantifies competition between
miroscopic and dipolar energies
74
Ku
b Q=
E_.=K sm6 K >0 Ky

Q<1
Y vv Y vv Y Branching
A

A | -

A
00N Strong stripe | »
domains T”C_
Byt — WNt1/2
Ge3Mn5C \ 301
t>t, Weak stripe domains
t.=2mw A, Second-order transition 1
RS\
t<t, In-plane magnetized BT T I B -

C. Kittel, Rev. Mod. Phys. 21 (4), 541 (1949)

Y- Murayama; J. Jap- Phys: Soc. 21, 2253 (1966) |
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Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

—> Brown paradox
= Nucleation and propagation

—>Walls and domains in films and nanostructures

= Near single domains

|
|

.~ = Domain walls in tracks

|

e

-
Ai,,,w,,l j‘, e |

= Skyrmions
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Pt.Il : DOMAINS and DOMAIN WALLS — The single-domain limit (1/2)

Theory / Simulation

500
44444444444444444 I*\\\_\ L
T ey ,:--iﬂ
’g 100 F o o o - | haeeeaeees | g T
L ket 4 | iseeees 4 <
= Vortex state ooy N € & O
N’ G . S
(300 | o o o - L8]
O K,=20 kJ/m? 9 I.p
+ - — =
D) 190 |] T 1] Ke=30kig < o
E ZOO B 7 f‘é 125 K, =0J/m* | r',"ll ; g
g < 100 N i - 3
a b EE ts
100 i 2 W 3%
—— \ -I' o
2 g ARy ™
Single domain state z SD \‘\‘\i{:{ o) o
— (o M-

0 [ 3 [ [ [0 [[[15 70

Disk thickness (A exch)

Thickness (nm) |
R.P. Cowburn, Zero-field

J.Phys.D:Appl.Phys.33, R1-R16 (2000) Cross-over
> Vortex state (flux-closure) dominates at large thickness and/or diameter

t D~20 A

% The size limit for single-domain is much larger than the exchange length

S Experimentally the vortex may be difficult to reach close to the transition (hysteresis)
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Pt.1l : DOMAINS and DOMAIN WALLS — The single-domain limit (2/2

Theory / Simulations

| (a) —
2Tl . Displaced vortex
g @ @ model
= - 300nm/10nm
(DT | - _
go !
< -500 0 500 1 L O T L O T
= Field (Oe) .
8 DIZ: — Field of vortex annihilation b | i
75} : = -~ Field of vortex equilibrium heu
;C—i'; 1 7(b) o ] 5" 0'1: « h, experiment by Schneider etal.|
g @ % u.ms:
o 0.06 H
Z O i | 8 0.[14:

@ . 1

~1 - seewindnn ' 100nm/10nm - bl

=0 '10(;, ldo(() )100 200 Calculation of the equilibrium line and
R.P. Cowburn, I'lC S T T . .

] K. Y. Guslienko & K. L. Metlov,

J.Phys.D:Appl.Phys.33, R1-R16 (2000) the annihilation line PRB 63, 100403(R) (2001)

> Typical loops for flux-closure states
S Energy of the vortex state can be computed from the anhysteretic above-loop area.
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Pt.11 : DOMAINS and DOMAIN WALLS — Range of dipolar field

Upper bound for dipolar fields in 2D

Estimation of an upper range of
dipolar field in a 2D system

HHd(R>H<Jf 2;53;« T Integration

\

|H,(R)||<Cte+1/R

Local dipole 1/13
R

Convergence with finite radius
(typically thickness)

Non-homogeneity of dipolar fields in 2D

Example: flat strip with
thickness/height = 0.0125

0.25

he—
0.10 / \\x///

Average

0.00

0 Position (a.u.) ’IOO

200

& Dipolar fields are weak and short-ranged in 2D or even lower-dimensionality systems
S Dipolar fields can be highly non-homogeneous in anisotropic systems like 2D

S Consequences on dot’s non-homogenous state, magnetization reversal, collective effects etc.

Institut Néel
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Pt.11 : DOMAINS and DOMAIN WALLS — Deviations from the macrospi

Configurational anisotropy: deviations from single-domain

Strictly speaking, ‘shape anisotropy’ is of second order:
1 2 b 2
Ey=—w,|N.M; + N M; + N, M|

2D: 6,=V K, (AN)sin’0

In real samples magnetization is
never perfectly uniform: competition
between exchange and dipolar

Num.Calc. (100nm)

AR CEFE ® RN ¥ XN RN

LS %% ERnFAaNIXTARMN

v arsaf\rss a2 x xR

trtteet sy PARAAANA AN

t41441 4R AAAR AR RS : : .

SESSESEET  EIIILLY Configurational anisofropy
* x % S EEPEEEEDE

;Z};$:;:a§q AARXANANN RS mUYbe UsedTO

MR AR AR KRR MMM NN Y NN . . .

Elbwiet state L baf tate stabilize configurations

ela>2.7 cla<2.7 against switching

s Higher-order contributions to magnetic anisotropy
M. A. Schabes et al., JAP 64, 1347 (1988) R.P. Cowburn et al., APL 72, 2041 (1998)
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Polar plot of experimental configurational anisotropy
with various symmetry

Color code: strength of anisotropy in a given direction
Radius: size of measured pattern

Direction: direction of measurement
R.P. Cowburn, J.Phys.D:Appl.Phys.33, R1-R16 (2000)

IEEE bl 2~, Institut Néel Olivier Fruchart - IEEE Magnetics 7% School - Rio, Aug 2014 - p.II-32

1964

MAGNETICS YEARSE“ Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Deviations from the macrospi
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> At least 8 nearly-equivalent ground-states for a rectangular dot
S Issue for the reproductibility of magnetization reversal
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Pt.1l : DOMAINS and DOMAIN WALLS — Deviations from the macrospi

Hypotheses = Soft magnetic material

=> Not too small neither too large nanostructures

Hc ~1/Width Hc ~Ms * Thickness

. : NiFe( ®w )andCo( ¥ )Lines
i NiFe Nanolines ]  Slope = c*M_* thickness
) u 4 P
, 7 5nm| NiF — 604
8004 Hc =a+ b/ Width £ ]
] i L 501
s 16nm NiFe ]
A L o
g . = 40
= 400- Tinm Nike o 30-
Q 5
i 2{1(}1 10nm NiFe @ 2P .00 £ 0.05
| " _« 3.5nm NiFe 104
e e ]
0- —»— ¥  2.8nm NiFe 0 I VS (. I .
0.000 0.004 0.008 0012 0.016 L S L0 L B
1/ Width (nm’) Thickness (nm)
D A A e —
P et R A R A R e ek s
t 5,; ««««««««««««««
H ~a + 3Mq W ~Lateral demagnetizing /%500 A MDD
coefficient of the strip 450 S e i e
W. C. Uhlig & J. Shi, /A 55 S b bk b Dl
Appl. Phys. Lett. 84, 759 (2004) A [l S, S 0 Y0 DN D I

= a4 o=
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Experiments Permalloy (soft)

700
< 0 >
600 l 1
— w [ 1 -
@ 500 T =
2 { ; "
T 400 + x .
@ L
o 300 + —
S 200 + 2 .D) Similar
> |
® 100 + =
0 t
0 1 2

number of flat ends
Fig. 8 Dependence of switching field of acicular
elements on the[mumber of fiat ends.| Element
geometry is also shown: L=25zm, W =200 nm,
P=500 nm.

K.J. Kirk et al., J. Magn. Soc. Jap., 21 (7), (1997)
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DOMAINS and DOMAIN WALLS — Coercivity from bulk to single-domain

LI e e B | T ¥ T LI | 1 T I 1
v.n 1.0
v \
0.8
\
\\::\\ }
\{\\k _0.3 3-
‘o\\\;\ 1T =
1.0 AN ~o.4"
zor-\\"ve:; o
0.8 "‘*-..3_6' -o.2
-
206 ‘:: ) o
£ W
K Y
0.4 \‘*\
R
Towards *;o;‘:j_...,_w Towards
. i N . .
superparamagnetism L .. .. | hucleation-propagation
10 ' !
0/0, and multidomain

F1G. 1. Particle size dependence of essentially spherical, ran-
domly oriented, iron particles. Calculated curve given by solid
line. Diameters D= g,. Data at 76°K obtained from electron micro-
scopic examination W, calculated from 7,/f, vs temperature O,
and from smoothed data of H.; vs D e.

E. F. Kneller & F. E. Luborsky,
Particle size dependence of coercivity and remanence of single-domain particles,
J. Appl. Phys. 34, 656 (1963)
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P11 : DOMAINS and DOMAIN WALLS — Cellular avtomata_

- Archetype for ferro coupllng ® ...

Field \

o e--a@@@
oy

—t

= X-90nm

- X=180nm s

o
-4

- , J:,gﬂr'“a"_" { 5?) B F"'_ —
| P goo® O | 7
—8-1 - =1 -——-’JI 71 ®-aF © =1 __..._-"l —
) =150 0 150 | <1500 150

R. P. Cowburn et al., New J. Phys. 1, 1-9 (1999)

| Conclusion:
Interactions increase energy
| barriers, wnhFor AF m’reruchons

(eIIqur automata

Alternatiye to strips
and domain walls
to convey and
process information-

Here :
majority gate

A. Imre et al.,
Science 311,

205 (2006)
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Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

—> Brown paradox
= Nucleation and propagation

| ©Walls and domains in films and nanostructures

—> Near single domains

=> Domain walls in'tracks

= Skyrmions
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Pt.11 : DOMAINS and DOMAIN WALLS — Domain walls in 1D structures (tracks

Logic (Field driven) | Memory (current-driven)

000000000000000000000000000007% 000000
AF Ml .f.

’ "..

N :
LAN J
[

L. Thomas et al.; IEEE International Electron
D. A. Allwood et al., Science 309, 1688 (2005) Devices meeting (2001)

Towards data 3D storage?

Take-away meessages

% Fundamental science and device prospects

S Field-driven and later spin-torque-driven

S. S. P. Parkin, Science! 320, 190 (2008)
Scientific American 76 (2009) + patents (IBM)
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Thin and narrow strips

>_.

P R S S

N e e S
|
P R R R e P

Transition for:  tW=~75A]

R. McMichael & M. Donahue,
IEEE Trans. Mag. 33, 4167 (1997)

Y. Nakatani et al., J. Magn. Magn. Mater.
290-291, 750 (2005)

éﬁéz Institut Néel
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Pt.11 : DOMAINS and DOMAIN WALLS — Domain walls in tracks (3/7

Geometrical pinning

Preparation for in-plane anisotropy

5um
- {H '
H
Step 1:

transverse

field
Remanent

state
T. Taniyama et al., APL76, 613 (2000) inn —
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Pt.II

: DOMAINS and DOMAIN WALLS — Domain walls in tracks (4/7

|sks

© 0

Vortex state  Near single-domain

(leaf state)
Aspect ratio D/t

F 3

Large diameter D

[oNe

Vortex state Onion state

Stability less dependent on geometry
(no vortex energy)

Control of ring states
H

Hy

- &
3 J

N

Ex: M. Klalii et al., APL78, 3268 (2001)
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Pt.11 : DOMAINS and DOMAIN WALLS — Domain walls in tracks

Perpendicular magentization Magnetic imaging

Narrow domain walls (2-20nm)

. , I:I>Shape mfluenced by disorder
Use large pads as domain reservoirs R G A I

\ f~ ) ' X
ST 3\\\,\, RN

Pt\Cb[O 6]\AIOX — MFM

O. Fruchart, unpublished

Site 1] —> |Site 2] —> |Site 3] —

Pt\Co[0.6]\AIOx — Kerr

Courtesy S. Pizzini (NEEL)

Ta\CoFeB[1]\MgO - NV center
S.P. Tetienne t al., Science 344, 1366 (2014)
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Pt.1l : DOMAINS and DOMAIN WALLS — Domain walls in tracks (6/7
Becker-Kondorski model - domain wall to be moved along a 1d landscape

Without applied field With applied field

e A soeray 7 (x)=6 (x)= 2, M H

AN~ :

dé
A HorEe F(x):__ A Force F(X) — _d_g dg+2MOM H

1 ,,dx /\ (\dx _dx s

E. Kondorski, On the nature of coercive force and irreversible changes in magnetisation, Phys. Z.

Sowjetunion 11, 597 (1937) Tuke-uwuy messages

L Propagation field determined by steepest energy gradient

% Microscopic / micromagnetic model needed to build landscape

S Valid only for essentially 1d systems
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Films : v(H)~exp|—pU,

Creep in strips

\

H
H

499 )

_ —H
gl L L L L L
5 S e i 1 B T S | 67 s o b Jam e S
H# (Oe¥) 10010 1
H (Oe)

K. J. Kim et al.,

crit

M_-

u=1/4

Pt\Co90Fe10[0.3]\Pt
Decreasing strip width

1E3 g1

== 1E- 43

Velocity (ms
mopom
TN W A

1£-8 4
1
1Eje Y—— -ttt r—
0,210 0,215 0,220 0,225 0,230 0,235 0,240 0,245

H-1I4
u=1/4 => 2D creep scaling

''''''''''''''''

1,6x10°

1,4x10°+

1,2x10°%

1,0x10°

(BU_)" H,, (kOe)

8,0x10°

T T T T T T T T
06 08 10 12 14 16 18 20 22
-1
1w, (pm”)

1/w scaling of critical field
—> Edge dominated (pseudo-1D)

PRL92 (10, 107202 (2004)

F. Cayssol et al.,

Pt/Co/Pt film, perpendicular anisotropy

@

Nature 458, 740 (2009)




Pt.11 : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (1/4
Polar coordinates for magnetization

Strip / Azimutal angle Longitudinal angle
Z

-

1D model : m=m/(z)

>

Principle for ndive solving

=> Assume uniform azimut :| o= (¢)

0=0(z,t)
= Search for steady-state motion

—=> Focus on center of domain wall

—> Use particulate derivative to convert time

d d
variation into motion d—l? |y, JmxH+amXx dl?
e I T Seia
Dt ot ] T W\dt' e/ Yo




Applied field H

L

. dm
dm dm Reminder : U:AW(—-ue)
= =+ xH=|y,|H
smEEall 1Yo/ m Yol Hu, dt
i et = Longitudinal speed v=—a|y|H Ay
==l = X—| =— H : .
do |, A H olyolH uy => Azimutal precession w=|y,|H
dm dm
For miet | = ( )N—dt H=|YO|H“@ s Fast azimutal precession,
slow forward motion
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Pt.11 : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (3/4 -

= Onset of azimutal precession
=> Creates demag field H,=—(sin¢) Mgu,

A H
Strip /
t
).
dm _ dm Applied field H
—Efz———‘—ryolIIl><I]}FClIIl><‘EiZ— -
Step 1
dm_dm| _ |
dt L dt H_ |YO|mXH_IYO|Hucp H,

L Similar to precession of a macrospin dot /

y

|yl Mssin g cosgu,
Forward motion

. /\
e—oc|y0|MssmcpCOScpuq>

i o H Weak forward Opposes precession
Balance for sSmz2p= . RP P J/
oM motion
Define Walker field : H,;=aMg/2 N. L. Schryer et al., 1AP45, 5406 (1974)

Institut Néel
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Pt.11 : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (4/4

Motion below the Walker field

: . 2
ch . 2=
Steady-state azimut : sin2¢@ o M,

High speed vely |AwHIa~1/o

&

A, |s a dynamic parameter and
is not the DW width at rest

Motion above the Walker field

= Precession with non-steady angular
speed

=> Soon recovers speed v~aly |H Ay
vw=|y,|Aw M¢/2 Walker speed limit

Motion below the Walker field
vW:lolAW Mg/2

1
aEl o= 0.01 ]
Uy =100-1000 m/s
217 H,=1-10 mT Y
® 04} : *g
0.2 1
- H,=aM.2
0 1 2 3

H, | H,

Micromagnetics modify
these figures

Experimental confirmation

200

150

100

G. S. D. Beach et al., Nat. Mater. 4, 741 (2005)

50 AF 8

80 Py(20nm) strips
L 60| 600nm wide
240
§ 20 al
o (% T [0
Field (Oe)

| i I I
30— 4050 60— 70
Field (Oe)

A. Thiaville & Y. Nakatani, in Spin dynamics in confined maghnetic structures III, B. Hillebrands & A.

Thiaville (ed.), Springer, 101, 161-206 (2006)
[ R

|EEE éiéz Institut Néel
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Pt.11 : DOMAINS and DOMAIN WALLS — Bloch

Closure domains (flat) Theory and simulation

Simulation
<+ 4 s o b) 8 50
up up* DOWN (?) -
C I-- . Y - { __40 o~
s -:tﬂ . _EﬁE = E
. ;.‘: = +30 &
“ha A < 5 E
= — - | E L20 &
DOWN DOWN UP PN 'y
. s : .. E U=
0 -, ; t 0
e RS < - 1350 1360 1370t( ) 1380 1390
- s A g ps
UP : DOWN UF‘, ﬁ_'j‘-T - A. Thiaville et al., Phys. Rev. B 67, 094410 (2003)
¥ ‘ S " . Requires a Bloch point
- of o — Not well described .
. 1pm in micromagnetism
Fig. 2. MFM image of an array of permalloy : : : .
dots 1 wm in diameter and 50 nm thick. Multiscale simulations :
. C. Andreas et al., JMMM 362, 7 (2014)
The central magnetic vortex
may be magnetized up or down using
a perpendicular field First theoretical insight in Bloch points :
T. Shinjo et al., Sci 289, 930 (2000 L
= Okunb eetgl_, Jlff;mf;m, ! (200(2) ) W. Déring, J. Appl. Phys. 39, 1006 (1968)

IEEE -y < Olivier Fruchart - IEEE Magnetics 7 School - Rio, Aug 2014 - p.II-51

1964

MAGNETICS YEARSJQZA bt http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Overview of magnetization textures

Bloch domain wall in the bulk (2D) Domain walls in thin films (2D — 1D)

T
o

Ch
N\

ﬁ'f'iv

=>No magnetostatic energy GO -+ ® - Neelwal

: _ AT t<w
S Width A, =V AIK = Contains magnetostatic energy
=> Areal energy Yw=4VAK

=>No exact analytics

6 Other ang|es & anisotropy L. Néel, C. R. Acad. Sciences 241, 533 (1956)

F. Bloch, Z. Phys. 74, 295 (1932) Magnetic vortex (1D — 0D) Bloch point (0D)

.,;F'"" a1
Constrained walls (eg : in stripes)
.

s = « . — - .
Permalloy (15nm) -—-——‘"—-1 .
Strip 500nm H '

T. Shinjo et al., W. Déring, J. Appl.|Phys. 39,
Science 289, 930 (2000) 1006 (1968)
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Pt.11 : DOMAINS and DOMAIN WALLS — Table of contents

—> Brown paradox
= Nucleation and propagation

| ©Walls and domains in films and nanostructures

—> Near single domains
R ¥ —> Domain walls in tracks

= Skyrmions
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Pt.11 : DOMAINS and DOMAIN WALLS — Dzyaloshinskii-Mmoriya and skyrmions (1/2

Exchange interaction (reminder)

J>0

—> Ferromagnetic
alignment

J >0

= Antiferromagnetic
alignment

NB : requires
low temperature

Dzyaloshinskii-Moriya Interaction (DMI)

=> Favors non-colinear alignment via
interaction with non-magnetic atom

=>Requires a non-centro symmetric
environment for non-cancelation

S

H,=d;.[S;xS,)

ﬂ Favors spirals or cycloids

ﬂ d;=—d ; selects a unique
chirality

I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259
(1957)

T. Moriya, Phys. Rev. 120, 91 (1960)

(=T

f2~, Institut Néel
MAGNETICS & & £

imetiiue. Grenoble, France

Olivier Fruchart - IEEE Magnetics 7 School - Rio, Aug 2014 - p.II-54

http://perso.neel.cnrs.fr/olivier.fruchart/slides



Pt.11 : DOMAINS and DOMAIN WALLS — Dzyaloshinskii-Mmoriya and skyrmions (2/2

Skyrmions under applied field

Thinned Fe, .Co,.Si, Lorentz microscopy

| = Present case :
spiral order

....................

X.Z. Yu et al.,, Nature 465, 901 (2010)

Thin films as artificial materials

] Magnetic layer

Q —— Non-magnetic underlayer

= Should brin? more versatility, and
operation at room temperature

= d,;=du;xn favoring cyloids
= Interfacial effect

NGNS [r(111)\Fe\Pd, sp-STM
T ™ FEEE

“a E He
s

Cycloids Single skyrmions

N. Romming et al., Science 341, 636 (2013)

Micromagnetics

> Isolated skyrmions as metastable
objects, moved with current
S. Rohart et al., PRB 88, 184422 (2013)
A. Fert et al., Nat. Nanotech 8, 152 (2013)
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