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INTRODUCTION TO MAGNETISM — Currents, magnetic fields and magnetization

Oersted field Magnetic dipole
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Magnetic dipole: A.m?
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Magnetization: A.m-’

Magnetic moment: A.m?
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INTRODUCTION — Hysteresis and magnetic materials

Manipulation of magnetic materials:
s Application of a magnetic field Spontaneous # Saturation

Zeeman energy: EZ = - I gH. Mg

Spontaneous magnetization M,
Remanent magnetization M,

MA — An ther_ notation
A/ Js_ uO Ms
Coercive field H.
Hext
>
Losses
P

E = Pﬂ o . dM

/ . _____________________________________________________________________________________________________________________________________________________________________________
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Introduction to magnetism — Moments — ToC(

Z> 1. Magnetic moments

Z> 2. Magnetism of single atoms
Z> 3. Moments in fields

Z> 4. Magnetic ordering

Z> 5. Magnetism in metals

Z> 6. Magnetic anisotropy
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Fundamental references

| OXFORD MASTER SERIES IN CONDENSED MATTER PHYSICS |

MAGNETISM
AND MAGNETIC
MATERIALS

). M. D. COEY # Magnetism in
Condensed Matter

Stephen Blundell

Repository of lectures of the European School on Magnetism: http://esm.neel.cnrs.fr
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1. MAGNETIC MOMENTS — Angular momentum

Classical physics

General definition

€=J]J o(r)

).rXv(r).dr

Electron orbiting around a
charged nucleus

=rxp

S
m,=9.109%X10 °" kg

Quantum mechanics

Heisenberg uncertainty principle:

h=6.626x10 ** J.s
Ar.Ap=h/2
r-ap h=h/21m=1.0546X10 ** J.s
ﬂ h is a natural measure for angular
momenta. Niels Bohr's postulate,

quantization of angular momentum
rXp| € Z

Newton's law: Ze*/4me r’=m v’/r

Quantized {: L=m_rv=In
) 4TTEN
B r=n"a,/Z with Bohr radius a,= 5
m.e
a,=0.529 A

ﬂ x=hl/m,a,c~1/137.04 (fine structure cte)

Electrons are largely not relativistic

)
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1. MAGNETIC MOMENTS — Orbital magnetic moment

Classical physics

Quantum mechanics

General definition

8=(rn with { € Z

1 . { is an orbital magnetic quantum
:E-[H rxj(rjdr number.
1/
Electron orbiting around — .
a charged nucleus ‘ Hp=Y 2m,
v is Bohr magneton, the
+Ze r quantum for magnetic moments
—e
u=I§
Charge —e e
u =mr’l Mass m, ﬂ U, =m,lU=m, e )h
=mri(—evi2nr) Y 7.
=—erv/2 e=1.6x10 °C m[E[ f,f]

) u:yf with y : gyromagnetic ratio

=—— for orbital motion of electrons

Up=9.274%10 -* Am”
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1. MAGNETIC MOMENTS — Spin magnetic moment

Spin angular momentum
Spin = intrinsic quantized angular momentum | Lande factor gis a dlénensmnless

_ _ _ version of Y- M hd or y=-— 9

Electrons are fermions (half-integer spin) Hg 2m,
with spin quantum number s=+— i . g= - ¢
pinq > B Orbital moment: g=1 ¥ 2m,

h . ~ N—i

B Angular momentum sh=w+— ® Electron spin:  g~2 ¥ m,

*% atoms/m? (for Fe)

With n~8.4X10

Spin magnetic moment
_ B nuy~7.8x10° A/m

Electron radius 7.~2.818X10 "° m

[8|=r.p=h/2 M Relativistic, Dirac equation Measured: M ;,~1.73X10° A/m
~2.2 4, atom Z=26
o ue:( 7 M— L (£526)

2, 2 Few electrons involved in ferromagn.

and ¢g=2.0023~2 |andé factor
ly|~elm
Electrons carry a spin magnetic moment ~ p, Nucleon spin moment is weak
and will be neglected here
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1. MAGNETIC MOMENTS — Spin-orbit coupli

Semi-classical picture

The nucleaus is orbiting in the sitting
framework of the electron, inducing

f» Current of the
‘orbiting’ nucleus'
u, I, I =+Zevlr

op m.,rv~nh

For the spin of one electron:
HoHpZ®

3
qma;

Eso:_l’lBl;so

)
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Spin-orbit is larger for heavy
elements

Reminder:
u,=4mx10 " S.I
Hp=9.274%X10 ~* Am”

a,=0.529 A
aclal: ~4.2K/Z*
qma

~0.36 meV/Z*

= Screening and details of
electrons in atoms are required

= In the range 10-1000meV for
magnetic elements
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2. MAGNETISM IN ATOMS — Shells and

Framework

quantum numbers

Charged nucleus + Z electrons
ﬂ N-body problem — untractable

ﬂ Seek one electron solutions + perturbation theory (— Hund's rules etc.)

Schrodinger equation 3 ¢, =¢€;yp,; with hamitonian % =— e —4566;
Seek solutions: ¢ (r,0,¢)=R(r)O(0)P(p)
R (r) and Y[ (0,p)=P(0)e'™ with: # of
states
n Principal quantum number — Sets the main energy levels €N
{ Secondary quantum number — Orbital moment n—i
m, Magnetic quantum number — z component of orbital moment 2(+1
Spin quantum number 2
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2. MAGNETISM IN ATOMS — Filling shells

Labeling the levels

Series
=K (n=1), L (n=2), M (n=3), N (n=4) etc.

= s ((=0), p (f=1), d

(1=2), f (=3), g (i=4) etc.

Usage
Spectroscopy

Chemical-physical properties

n and £ filling (Hartree-Fock)

#orbitals 2 6 10 14 18
=0 (=1 f=2 f=3 (=4

K n=1 1s

L n=2 2s | 2p

M n=3 3s| 3p .3d

O n=5 5s| Sp o5d 5f | 5¢g

Fe, Z=26
‘ 1s> 2s” 2p° 3s® 3p° 4s” 3d°
2 2 6 2 6 2 6

lon Fe2+

B 3 + 15° 25° 2p° 3s° 3p° 45° 3d°

lon Fe3+

B 3 + 15°25° 2p° 3s° 3p° 4s° 3d°
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2. MAGNETISM IN ATOMS — Momenta and Hund's rules

Combination of momenta and moments

Angular and spin momenta from all electrons add up:

S
L=) 8 and S=)_s; J=L+S L2=L(L+1)
J

Resulting magnetic moment:

n o =(—upg/h)(L+28)
=g (—pglH)J - g:§+[S(S+1)—L(L+1)]/2J(J+1)

Landé factor

Only partly filled shells may display angular momentum and magnetic moment.

Or: empirical rules for populating the last partly filled shell

Rule Arises from...
1. Maximize S Coulomb interaction and Pauli principle
2. Maximize L consistent with S Coulomb; electrons orbiting same sense

3. J=|L-S| for less than half-filled shells
J=L+S for more than half-filled shells

— M ,c|-J,J]|

‘/ —
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Spin-orbit coupling




le for Hund's rules

2. MAGNETISM IN ATOMS — Examp
2 2 6 2 6 2 7

7 electrons to fit

Co, Z=27 ﬂ 1s* 2s” 2p° 3s” 3p° 4s°
Filled subshells

{=2 - m,e|—2,2]

#2: L max

f f #1: S max

E — 3Hp
L=+3 — 3

u=(28+L)py

u=06 g
J=+2

and g=+§—>u=gJJuB

+[S(S+1)—L(L+1)|/2J(J+1)

3332 _4
499 3
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2. MAGNETISM IN ATOMS — Example for Hund's rules

51 3d 3d°: Fe,Fe*"
" 3d”:Co,Co*"
HHMX:6lhgl]
4k L
o E [a] a
; ...: 5‘!
0 1 — o !
0 2 14 6 8 10
. n
H=0 iy

FE

Hund's rules for the 3d and 4f series

4f°: Tb,Dy?"

From: Blundell's
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3. MOMENTS IN FIELD — Zeeman splitting

For both classical physics and quantum mechanics:

1 Magnetic moment
H Magnetic field
B Magnetic induction

Spin moment 1/2 Quantum momentum J

E=—p.B=—p,u.H

f M,=+J
iAE:_gJ“BBz
f ‘ tiii AE— 2g SugB,~—2u; B, Wig=d
& Polarizability M,=-J
> Osdillations Classical physics
& Spectroscopy P —
L Resonances etc. =—p.B=—pBcos

http://perso.neel.cnrs.fr/olivier.fruchart/slides/




3. MOMENTS IN FIELD — Larmor precession

Larmor precession

Field H creates a torque on 4

df
E:I‘:uouXH:uonyH

du_
) 17~ HoyuxH

AB

dp/dt

)
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y/2T has meaning Hz/T

q yJ/2m ~ 28 GHz/T

Yo/2T™ ~ 14 GHz/T

: e
For spin angular momentum )’s’“—;

(&

Application

Landau-Lifshitz-Gilbert equation

m=p,ymXH+oamXm

ﬂ Ferromagnetic resonance (FMR):
yields ¥y and u

spin torque etc.

for precessional dynamics of magnetization

ﬂ Spin waves, precessional switching,
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3. MOMENTS IN FIELD — Orbital diamagnetism

Semi-classical view

Maxwell equation V)(E:—%—]t3
B Lenzlaw with E (r)——ﬁaBZ
2 ot

Work provided to the electron,
which changes its energy, thus its
orbit and angular momentum, even
for full shells

_41'(60712

r=n"a,/Z a, -
m,e

n~6x10%° atoms/m?

B x~-10°
Diamagnetism is weak and

essentially temperature-
independent

Quantum mechanics

ﬂ X may be enhanced in the
following cases:

Introduce vector potential A in Hamiltonian

n  Volumic density of electrons

p —» pteA : : o
Dimensionless susceptibility
X =u,M/B
=—nu,e*(r*)/6m,

—>Large n, large a, low Z
(ex: aromatic materials)

= Low effective mass
(see later on: metals)

(Weak electron binding)

____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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3. MOMENTS IN FIELD — Curie law (paramagnetism of localized electrons

Calculation

Framework: localized moments u,=g,J u;

+J
Partition function: Z= > exp(-BE)

Curie law (low-field expansion):
X=n<uJ>/H=C/T

M,=-J Wlth E:_IJOIJZH Wlth meff:ng,lB \/J(J‘l‘l)
<U >: 1 04
m (x Bu,Z 0H
Result o HyB _9.274x10** B
kyT  1.38x10 %% T
= . . = J H
<“z> uyB,(x)  with: x=Bu,g,J g Rule of thumb:
2J+1 2J+1 :
coth coth uy gets polarized at 1K under 1T
B,(x)= 2J 2J 2J ( J 59
ﬂ Case spin 1/2 . e i i
AB,,,(x)=tanh (x) Bip(x)~x | S . Brllﬁmn 1/2
. » . ¢ Langevin
B Case spin — (Langevin) =
Bo(x)=L (x) L (x)~x/3 L% .

)
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3. MOMENTS IN FIELD — Orbital diamagnetism

Molar susceptibility, Xmol

FE

institut

1075+

107° 1

10~7+

Fe,Co,Ni

Paramagnetic

, Atomic _number |

o 60 80 100

Diamagnetic

-10-8 4

From: Coey
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4. MAGNETIC ORDERING — Mean-field theor

molecular field

Reminder: Curie law for paramagnetism

(u,)=p, By(x)  with: x=Bu,p, H

=> No magnetization at zero field
= 1uggets polarized at 1K under 1T

= Postulate of molecular field to explain magnetic ordering

Mean-field equations

Reminder: notations

Internal field: H,=n,,M_+H

‘ Ms:Mo ‘%J(xo) with:

Can be rewritten:

Mo:nIJJ

M 3n,C J | °

(0]

M, :?BJ(xO):(l T J+1

1» Molecular field

x,=x(H=0)

Hy=g;ugd
xo:ﬁuoanWMs

X=n(u,)/H=CIT

“onm(fff
3kg
M g=(g;Hg\ J(J+1)

C=

)
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4. MAGNETIC ORDERING — Mean-field theory (molecular field

1 T J+1 1.
B, (x)=|=
_J(:O)E]:WC ! O 2 0.
" J+1 T
Initial slope: —— S 0.
p o0 ;
g 0.
q T, =nyC O
_ HoMwngsHyJ (I +1) T>T, H#0 .
3kB A e
< 1.0 A
C S
For T>T .. X= i
" e g =

0.6

—> Mean-field theory yields
trends and orders of 0.2
magnitude only

0.4+

Magnetization,

0 : : } = >
0 0.2 0.4 0.6 0.8 1.0

Temperature, T/T,

= Notice for low dimension: T .~n,,

From: Coey

o
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4. MAGNETIC ORDERING — Types of magnetic order

From Weiss field to Heisenberg Hamiltonian

Weiss molecular field H,=n,,M,+H

o 2ZJ; .= e
Generalization El.,j:—gz Ji,jsi'sj:_2(z Ji,jsj)'si i,j = HoMwNgs My

i>j j
1» dimensionless spin

Z :number of nearest neighbors

@ Shift notation: J for exchange, S for atomic spin

Antiferromagnet Helial

J; ;>0 J; ;<0 J; ;<0 J, ,dJ, ...

tttt tety ]ty
tttt vt ”li b

B Fe B CoO B Fe304 B Dy
M =1.73x10° A/m  J=3/2 M, =480 kA/m H=10.4 1
T.=1043 K Ty=292K T.=858 K Te85—-179 K

. _____________________________________________________________________________________________________________________________________________________________________________
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4. MAGNETIC ORDERING — Exchange

IEECOLTIEEE  [nteratomic principle of first Hund's rules

Fermions: antisymmetric wave function: ¢(2,1)=—y (1,2)

Space: ¢,=(1/V2)(y,+w,) Space: $,=(1V2)(y,—y,)
Spin S=0 Spin S=1
$=(12)|1, L) =1 ) b=(12)1, 1,)
b,=(1/V2)||1, L, )47, L,)]
b=(1V2)[4, 4,)

Spin singlet state Spin triplet state

Hamiltonian: %=-2J ,8S,.8S,

1» Exchange integral
/ . _____________________________________________________________________________________________________________________________________________________________________________
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4. MAGNETIC ORDERING — Exchange

Direct exchange

Superexchange

Molecules — singlet

Metals — Ferro/Antiferro

ond length and orientation dependent
| Often: m — Antiferro; /2 — Ferro

®
A ey

\_/

Indirect exchange

Double exchange

Conduction electrons

— Ferro

RKKY, Rare earth(4f), GaMnAs(3d)

Mixed-valence states

& e- hopping

— Ferro

Mn3+ (3d4)
(La0.7Ca0.3)Mn03

Mn#* (3d3)

)
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4. MAGNETIC ORDERING — What about low dimensions and alloys

ﬂ Often enhanced magnetic moments in metals because of band narrowing

ﬂ Decreased ordering temperature
_27J;;5(8+1)
3Kkg

C Lower number of neighbors — Tc reduced

Thermal excitations in low dimension

— Spin waves, Mermin-Wagner theorem (theoretically no order
at finite temperature in 2D, no order in 1D)

ﬂ Qualitative change of magnetic order (strain, structure, mixing — dead layers)

= fcc or fct Fe: mixed ferro/spiral antiferro
= 1ML Fe/W(001): Antiferromagnetic
= Small clusters may be ferromagnetic. Ex: Rh

/ . _____________________________________________________________________________________________________________________________________________________________________________
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5. ITINERANT MAGNETISM — Band models

Free electron model

Two-band model

A sop
2m,
c Density of states
! at the Fermi level ‘ 1 d
2 2 3/2 1/2
1 D, (&) =(1/47)|2mn?|" b
_3n
4 € kyTr=cg
1
i ®@T,l(EF):E@(EF) >
i hk?
Definitions Heavy A 522 =gl o o
m >m, €= -+e, m <m, 2m
de nk 2m . ¥
Ep— —*—hUF
dk ) / ‘1
L = =7 h2k2
S Pk ~om
de/dk e:2 ¢

[VEELInstltut Néel, Grenoble, France
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5. ITINERANT MAGNETISM — Pauli susceptibility and diamagnetism

Pauli paramagnetism

Landau diamagnetism

A
2y, B — >
Ho M 2
Xp =—2—=Ho;P(€)
5 Reminder Curie law:
=3I’lonl'lB I,l nm2
ok, T, Xczo—eff
3k, T
= Temperature independent
= Proportional to 9 (e,)
= Weak as T,>300 K

Free electrons

2
_uonl’lB 1
X =—2—L=——X
Yook, T, 3"

X, +Xp>0 ﬂ Paramagnetism expected

Generalization to bands

2
XL:—l(mi) Xp
> 3\M
ﬂ Diamagnetism may dominate

even in metals

)
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5. ITINERANT MAGNETISM — Pauli susceptibility and diamagnetism

Molar susceptibility, Xmol

FEL

institut

Fe,Co,Ni

Paramagnetic

0
, Atomic _number |

o 60 80 100

Diamagnetic

-10-8 4

From: Coey
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5. ITINERANT MAGNETISM — Band models

Density of states, Njfe) (eV~"atom™")

| LN TS aS—

Energy, € (eV) From: Coey

'
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5. ITINERANT MAGNETISM — Magnetic ordering

Nea e o band mgaets

A
2u, B — ) =
H.=n,M+H

ng can be related to the exchange energy
[

—<1/4>(” - )
n

Stoner criterium for ferromagnetism:

@T,l(EF)
>1
n

(Coulomb + Pauli)

I

Ip, (ex)>1 (expressed for one atom)

Xp=H, “213 D (EF)

Enhanced susceptibility:

M X,H,
B ‘}{ =(ngX+1)X,
‘ X:L
<1_nSXP)

Divergence — spontaneous moment

)
/VEfL Institut Néel, Grenoble, France

Remember

& Ordering for high DOS at Fermi energy
& Atomic moment may nof
be a multiple of 1y
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5. ITINERANT MAGNETISM — Magnetic ordering

Band structure calculation of the 3d series (magnetic state)
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Average atomic moment, <m>

5. ITINERANT MAGNETISM — Magnetic ordering

A Slater-Pauling plot

3.0+
Reasonably well explained by a -
o 54 rigid flat band model ’ E:S.r
e Fe—Co
o Ni—Co
207 A Ni—Cu
¥ Ni=Zn
> Nir
T & I—
1-5 A Ni-Mn
A Co-Cr
g 1 4+ Co-Mn
o % Pure metals
0.5+ s
0 ———t—— i : : : peo oo
4 il e Co Cu
. i 8 9 11

Z (4s + 3dfilling)

L Relevance for alloys
s Nano-alloys: enhanced moment and anisotropy
of Co-Fe at interfaces
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Olivier Fruchart - School of GdR nanoalloys - Fréjus, June 2010 - p.36

http://perso.neel.cnrs.fr/olivier.fruchart/slides/

From: Coey



Introduction to magnetism — Moments — ToC(

Z> 1. Magnetic moments

Z> 2. Magnetism of single atoms
Z> 3. Moments in fields

Z> 4. Magnetic ordering

Z> 5. Magnetism in metals

Z> 6. Magnetic anisotropy

'
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6. MAGNETIC ANISOTROPY — Crystal electric field and spin-orbit coupli

Physics at play

Crystal electric field: Coulomb
interaction between electronic orbitals
and the crystal environment

— Hamiltonian I .,

— Hamiltonian I,

Reminder: spin-orbit coupling S and L.

Maijor effect: A . ;

=L is not a good quantum number

=> Quenching of orbital momentum
— J~S and g~2

Perturbation: X s,
—> Magnetic anisotropy (see next slide)

%cf %so

3d 1—10 eV 10—100 meV

Af 25 meV 100—500 meV

)
foé Institut Néel, Grenoble, France

Major effect: I,

=L is a good quantum number
—> Moments close to atomic values

Perturbation: H . ;
= Magnetic anisotropy (see next slide)
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6. MAGNETIC ANISOTROPY — Magneto-crystalline anisotrop

Origin and formalism

Definition: angular dependance of the energy of a magnetic material (F, AF etc.)
Origin: crystal-field, assisted with spin-orbit in the 3d series.

Group theory is used to predict terms in expansions:
Cubic symmetry E_ .=K, afai-l—(xﬁoc;-l—agaf)+Kz(o<2o<2o<2)+

gy

Hexagonal symmetry E_ =K sin®0+K,sin*0+K,sin°0+K,sin°0sin’p+ ...

Consequences and figures Nano-alloys

& Anisotropy lies at the base of magnets & Alloys: allows low symmetry (distortions,
and recording interfaces, band filling etc.)

O Low symmetry favors high anisotropy s Nano: changes lattice parameter and

K range from <1 to 107 J/m? symmetry. (f FeCo: low anisotropy in bulk,
in known materials peak anisotropy at interfaces and steps.
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6. MAGNETIC ANISOTROPY — Magneto-elastic anisotrop

Origin and formalism

Definition: dependence of magnetic anisotropy on strain

Origin: can be viewed as the strain-derive of magneto-crystalline anisotropy
Notice: mirror effect to magneto-striction

In principle a third-rank tensor is required: Simple example of a polycristalline
— Strain is a second-rank tensor sample urjEder uniaxial strain:

2 1 2
— Magnetization is a vector Emelz_ASE(SCOS 9—1)€+5E€ + ...

E Young's modulus

Nano-alloys

Consequences and figures

& Order of magnitude of Lambda: 1078

& Limits coercivity in low-anisotropy L Alloys: composition changes Emel
materials & Nano: huge strain. Non-linear terms
& Underpins effects such as invar (largely unknown) play the leading role.

s Magneto-striction is used in actuators

/ . _____________________________________________________________________________________________________________________________________________________________________________
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