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INTRODUCTION TO MAGNETISM – Currents, magnetic fields and magnetization
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Hext

M

Manipulation of magnetic materials:
 Application of a magnetic field

s0Z H.Mµ−=EZeeman energy: 
Spontaneous magnetization Ms

Remanent magnetization Mr

Hext

M

Losses

MHE dext0∫= µ

Coercive field Hc

J s=0M s

Another notation

Spontaneous ≠ Saturation

INTRODUCTION – Hysteresis and magnetic materials
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy
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Fundamental references

Repository of lectures of the European School on Magnetism: http://esm.neel.cnrs.fr
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Quantum mechanicsClassical physics

1. MAGNETIC MOMENTS  –  Angular momentum

ℓ=∭r.r× v r . dr

General definition Heisenberg uncertainty principle:

r . p≥ℏ/2

ℏ    is a natural measure for angular 
momenta. Niels Bohr's postulate,
quantization of angular momentum
∣r×p∣ ∈ ℏℤ

ℓ=mer v

Electron orbiting around a 
charged nucleus

ℓ=r×p

Ze2/40r
2=me v

2 /r

Figures

r=n2a0 /Z

 Newton's law:

ℓ=mer v= l ℏQuantized l:
with Bohr radius a0=

40ℏ
2

mee
2

=ℏ/mea0c≈1/137.04

 Electrons are largely not relativistic
 (fine structure cte)

me=9.109×10
−31 kg

ℏ=h/2=1.0546×10−34 J.s
h=6.626×10−34 J.s

a0=0.529 Å
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1. MAGNETIC MOMENTS  –  Orbital magnetic moment

Classical physics

= 1
2
∭r× jrd r

 =r2 I
=r2−ev /2r
=−erv/2

= ℓ

General definition

=I S

Electron orbiting around
a charged nucleus

=− e
2me

with  : gyromagnetic ratio

for orbital motion of electrons

Quantum mechanics

∣ℓ∣= l ℏ

B=ℏ=−
e

2me

ℏ

is Bohr magneton, the
quantum for magnetic moments

z=mℓB=m ℓ −e2me ℏ
m ℓ∈[−l ; l ]

   is an orbital magnetic quantum 
number.

B=9.274×10
−24 A.m2

Figures

me

−eCharge
Mass

e=1.6×10−19 C

l
with l ∈ ℤ
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Spin magnetic moment

1. MAGNETIC MOMENTS  –  Spin magnetic moment

Figures
n≈8.4×1028 atoms /m3With

nB≈7.8×10
5 A /m

Electrons are fermions (half-integer spin)

with spin quantum number

Spin = intrinsic quantized angular momentum

s=± 1
2

s ℏ=±ℏ
2

Angular momentum

Electrons carry a spin magnetic moment

e=−eg2me ms

Electron radius re≈2.818×10
−15 m

∣ℓ∣=r.p=ℏ/2 Relativistic, Dirac equation 

g=2.0023≈2

with

≈B

Spin angular momentum

ms=±
1
2

and Landé factor

Overview

Landé factor g is a dimensionless

version of   : ∣∣
B
=g

∣ℓ∣
ℏ

Orbital moment:

Electron spin:

g=1

g≈2 ≈− e
me

=− e
2me

(for Fe)

M s ,Fe≈1.73×10
6 A /m

≈2.2B atom
−1 (Z=26)

Few electrons involved in ferromagn.

Measured:

∣∣≈e/m
Nucleon spin moment is weak
and will be neglected here

=− eg
2me

 or
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Semi-classical picture

1. MAGNETIC MOMENTS  –  Spin-orbit coupling

The nucleaus is orbiting in the sitting 
framework of the electron, inducing

Bso=
0 I n
2r

Current of the
'orbiting' nucleus'
I n=Zev/r
mer v~n ℏ

so=−BBso~
0B

2 Z 4

4a0
3

Spin-orbit is larger for heavy 
elements

For the spin of one electron:

a0=0.529 Å

B=9.274×10
−24 A.m2

Reminder:
0=4×10

−7 S.I.

0B
2

4a0
3 ~4.2 K / Z 4

~0.36 meV / Z 4

Screening and details of 
electrons in atoms are required

In the range 10-1000meV for 
magnetic elements 

Figures
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy
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Framework
2. MAGNETISM IN ATOMS  –  Shells and quantum numbers

H i=ii H =− ℏ2

2me

∇2− Ze2

40r

Charged nucleus + Z electrons
N-body problem → untractable

Seek one electron solutions + perturbation theory (→ Hund's rules etc.)

r , ,=Rr

n

l
m ℓ

ms

Principal quantum number    → Sets the main energy levels

Secondary quantum number → Orbital moment

Magnetic quantum number → z component of orbital moment

Spin quantum number 2

2 l1

n−1

∈ ℕ

Rn
ℓ r Y ℓ

mℓ  ,=P ℓ
m ℓei mℓ

with hamitonianSchrödinger equation

Elecrtonic orbitals

Seek solutions:

and with: # of
states



Olivier Fruchart  –  School of GdR nanoalloys  –  Fréjus, June 2010  –  p.12

http://perso.neel.cnrs.fr/olivier.fruchart/slides/http://perso.neel.cnrs.fr/olivier.fruchart/slides/Institut Néel, Grenoble, France

2. MAGNETISM IN ATOMS  –  Filling shells
Labeling the levels

K (n=1), L (n=2), M (n=3), N (n=4) etc.

s (l=0), p (l=1), d (l=2), f (l=3), g (l=4) etc.

Spectroscopy

Chemical-physical properties

Series Usage

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

5s 5p 5d 5f

K

L

M

N

O 5g

l=0 l=1 l=2 l=3 l=4

n=1

n=2

n=3

n=4

n=5

# orbitals 2 6 10 14 18

n and l filling (Hartree-Fock)
Examples

Fe, Z=26

1s2 2s2 2p6 3s2 3p6 4s2 3d6

Ion Fe2+

3  1s2 2s2 2p6 3s2 3p6 4s0 3d6

2 2 6 2 6 2 6

Ion Fe3+

3  1s2 2s2 2p6 3s2 3p6 4s0 3d5
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2. MAGNETISM IN ATOMS  –  Momenta and Hund's rules

L=∑ ℓi S=∑ si
Angular and spin momenta from all electrons add up:

and J=LS

Resulting magnetic moment:

L=∑ ℓi

µ = −B/ ℏL2S
=g −B /ℏJ g=3

2
[S S1−L L1]/2JJ1

Landé factor

Combination of momenta and moments

Hund's rules

Only partly filled shells may display angular momentum and magnetic moment.

Or: empirical rules for populating the last partly filled shell

1. Maximize S
Rule Arises from...

2. Maximize L consistent with S

Coulomb interaction and Pauli principle

Coulomb; electrons orbiting same sense

3. J=|L-S| for less than half-filled shells
    J=L+S for more than half-filled shells Spin-orbit coupling

M J∈[−J , J ]

S2=S S1
L2=L L1
J2=J J1
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2. MAGNETISM IN ATOMS  –  Example for Hund's rules

Co, Z=27 1s2 2s2 2p6 3s2 3p6 4s2 3d7

Filled subshells

2 2 6 2 6 2 7

#1: S max

l=2  mℓ ∈ [−2,2]

m ℓ

ms

7 electrons to fit

1
2

−1
2

12 0 -2-1

#2: L max

#3: J=|L+S|

S=3
2
 3B

L=3  3B

J=9
2

g =
3
2
[S S1−L L1]/2J  J1

=
3
2
 3
2
5
2
−3×4/2 9

2
11
2


=
3
2
−33
4

2
99
=
4
3

g=4
3
=gJ J Band

=2SLB
=6B

Appendix
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2. MAGNETISM IN ATOMS  –  Example for Hund's rules

From: Blundell's

Hund's rules for the 3d and 4f series

=0B

max :6B

max :10B
3d6 :Fe ,Fe2+

3d7 : Co ,Co2+

4f 9: Tb ,Dy3+
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy
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Energetics

Spin moment 1/2

3. MOMENTS  IN FIELD  –  Zeeman splitting

E=−2gssBBz≈−2BBz

E=− .B=−0.H

For both classical physics and  quantum mechanics:

Magnetic moment
Magnetic field
Magnetic induction


H
B

Quantum momentum  J
M J=J

M J=−J

M J=J−1

M J=−J1

E=−gJ BBz

Classical physics

E=− .B=−Bcos

Polarizability
Oscillations
Spectroscopy
Resonances etc.

Consequences
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Larmor precession

3. MOMENTS  IN FIELD  –  Larmor precession

=−gJ
e

2me

0

d l
d t
=Γ=0×H=0 l×H

Field H creates a torque on l

d
d t
=0×H

Figures

For spin angular momentum s≈−
e
me

/2 has meaning Hz/T 

s/2 ≈ 28 GHz /T

orb /2 ≈ 14 GHz /T

Application

ṁ=0m×Hm×ṁ

Landau-Lifshitz-Gilbert equation
for precessional dynamics of magnetization

Ferromagnetic resonance (FMR):
yields      and  
Spin waves, precessional switching,
spin torque etc.
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FiguresSemi-classical view
3. MOMENTS  IN FIELD  –  Orbital diamagnetism

Large n, large a, low Z
 (ex: aromatic materials)

Low effective mass
  (see later on: metals)

∇×E=−∂B
∂ t

Lenz law with

Maxwell equation

Er =−
r
2

∂Bz

∂t

Work provided to the electron, 
which changes its energy, thus its 
orbit and angular momentum, even 
for full shells

Quantum mechanics

Introduce vector potential A in Hamiltonian

p  peA

 =0M s/B

=−n0e
2 〈r2 〉/6me

n

a0=
40ℏ

2

mee
2

r=n2a0 /Z

n≈6×1028 atoms /m3

Volumic density of electrons

Dimensionless susceptibility

≈−10−5

Diamagnetism is weak and 
essentially temperature-
independent

    may be enhanced in the
following cases:

(Weak electron binding)
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3. MOMENTS  IN FIELD  –  Curie law (paramagnetism of localized electrons)

Z= ∑
M J=−J

J

exp −E 

Framework: localized moments J=gJ J B

Partition function: 

〈z 〉= 1
0Z

∂Z
∂H

E=−0zHwith: 

Calculation

Results

B 1 /2x =tanh x

x=0gJ J BHwith: 

Case spin 1/2
B 1 /2x ~x

〈z 〉=JB J x 

Case spin → ∞ 
B ∞x =L x 

(Langevin)
L x ~x /3

E
xp

an
si

on
s

Figures

=n 〈J 〉/H=C /T
Curie law (low-field expansion):

x≈
BB
kBT

=9.274×10
−24

1.38×10−23
B
T

Rule of thumb:
B     gets polarized at 1K under 1T

1.0

0.8

0.6

0.4

0.2

0.0

<m
>

86420
x

Brillouin 1/2
Langevin

C=
0nmeff

2

3kB

meff=gJ BJ J1with: 

B J x=[2J12J
coth2J12J

x− 1
2J

coth x2 J ]
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3. MOMENTS  IN FIELD  –  Orbital diamagnetism

From: Coey

4d3d
5d3p

3p

4p
5p

6p

4s 5s 6s

3d 4d

5d

Fe ,Co,Ni
4f
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy



Olivier Fruchart  –  School of GdR nanoalloys  –  Fréjus, June 2010  –  p.23

http://perso.neel.cnrs.fr/olivier.fruchart/slides/http://perso.neel.cnrs.fr/olivier.fruchart/slides/Institut Néel, Grenoble, France

Reminder: Curie law for paramagnetism

4. MAGNETIC ORDERING  –  Mean-field theory (molecular field)

No magnetization at zero field

 

Postulate of molecular field to explain magnetic ordering

1B gets polarized at 1K under 1T

C=
0nmeff

2

3kB

meff=gJ BJ J1

x=0JHwith: 〈z 〉=JB J x 

Hi=nWMsH

Molecular field

M s=M0B J x0 M0=nJwith: 

Can be rewritten: x0=x H=0

M s

M0

=B J x0= 13 T
nWC

J1
J x0

J=gJ BJ
Mean-field equations Reminder: notations

=n 〈J 〉/H=C /T

x0=0JnWM s

Internal field:
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1.0

0.8

0.6

0.4

0.2

0.0
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ti
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s

121086420
x0

4. MAGNETIC ORDERING  –  Mean-field theory (molecular field)

B J x0= 13 T
nWC

J1
J x0

J1
3 J

Initial slope:

Reminder: self-consistent equation

Some results
T C =nWC

=
0nWngJ

2 B
2 J J1

3kB

= C
T−T C

TT C :For

Notice
Mean-field theory yields 

trends and orders of 
magnitude only

Notice for low dimension:T C~nW

B1/2 B1 B2 B5

B∞TT C

TT C T=T C

TT C ,H≠0

From: Coey
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4. MAGNETIC ORDERING  –  Types of magnetic order

Hi=nWMsH

E i , j=−2∑
i j

J i , jSi .S j=−2∑j J i , jS j.Si
2 Z J i , j=0nWngS

2B
2

Weiss molecular field

Generalization

Z : number of nearest neighbors

From Weiss field to Heisenberg Hamiltonian

Ferromagnet
J i , j0

Antiferromagnet
J i , j0

Ferrimagnet
J i , j0

Helical
J 1 , J 2 

Fe
M s=1.73×10

6 A /m
T C=1043 K

CoO
J=3/2
TN=292 K

Fe3O4

T C=858 K
M s=480 kA /m

Dy

T∈85−179 K
=10.4B

dimensionless spin

Shift notation: J for exchange, S for atomic spin
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4. MAGNETIC ORDERING  –  Exchange

2,1=−1,2Fermions: antisymmetric wave function:

Spin singlet state Spin triplet state

s=1/212 s=1/21−2Space:
Spin S=0

s=1/2[∣1, 2 〉−∣2, 1〉]
Spin S=1
s=1/2∣1, 2〉
s=1/2[∣1, 2 〉∣2, 1〉]
s=1/2∣1, 2〉

Space:

H =−2 J 1 ,2S1 .S2Hamiltonian:

Direct exchange Interatomic principle of first Hund's rules

Exchange integral
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4. MAGNETIC ORDERING  –  Exchange
Direct exchange

Molecules → singlet

Metals → Ferro/Antiferro

Superexchange

Bond length and orientation dependent

Often: π → Antiferro; π/2 → Ferro

Double exchange
Mixed-valence states

Ex: (La0.7Ca0.3)Mn03
Mn3+ (3d4) Mn4+ (3d3)

e- hopping

Indirect exchange

→ Ferro

Conduction electrons

RKKY, Rare earth(4f), GaMnAs(3d)

→ Ferro
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4. MAGNETIC ORDERING  –  What about low dimensions and alloys

T C=
2 Z J i , j S S1

3kB

Decreased ordering temperature

Lower number of neighbors → Tc reduced

Thermal excitations in low dimension

→ Spin waves, Mermin-Wagner theorem (theoretically no order 
at finite temperature in 2D, no order in 1D)

Qualitative change of magnetic order (strain, structure, mixing – dead layers)

fcc or fct Fe: mixed ferro/spiral antiferro

1ML Fe/W(001): Antiferromagnetic

Small clusters may be ferromagnetic. Ex: Rh 

Often enhanced magnetic moments in metals because of band narrowing
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy
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Free electron model
5. ITINERANT MAGNETISM  –  Band models

k

=ℏ
2k2

2me

D  , F =1/422me /ℏ
23/2F1/2

=
3n
4F

Density of states
at the Fermi level

F

Effective mass etc.

=ℏ
2k2

2me

=ℏ
2k2

2m*0
d
dk

=ℏ k
m*=ℏ vF

s-p

d

Two-band model

kBT F=F

D  , F=
1
2
D F

Heavy:
m*me

m*= ℏ k
d/dk

Definitions =ℏ
2k2

2m*−0

=ℏ
2k2

2me

Light:
m*me
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5. ITINERANT MAGNETISM  –  Pauli susceptibility and diamagnetism

T F≫300 K

2BB

P =
0MS

B
=0B

2D F

=
30nB

2

2kBT F

Temperature independent

Proportional to 

Weak as
D F

Pauli paramagnetism

Reminder Curie law:

C=
0nmeff

2

3kBT

Landau diamagnetism

L=
−0nB

2

2kBT F

=−1
3
P

Free electrons

Paramagnetism expectedLP0

Generalization to bands

L=−
1
3 me

m* 
2

P

Diamagnetism may dominate
even in metals
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5. ITINERANT MAGNETISM  –  Pauli susceptibility and diamagnetism

From: Coey

4d3d
5d3p

3p

4p
5p

6p

4s 5s 6s

3d 4d

5d

Fe ,Co,Ni
4f
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5. ITINERANT MAGNETISM  –  Band models

From: Coey

Band structure calculation of the 3d series (paramagnetic state)
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Stoner criteriumMean field for band magnetism

5. ITINERANT MAGNETISM  –  Magnetic ordering

2BB
Hi=nSMH

=M
H
=
PH i

H
=nS1P

P=0B
2D F

Enhanced susceptibility:

=
P

1−nSP
Divergence → spontaneous moment

can be related to the exchange energy

−I /4n−nn 
2

nS

(Coulomb + Pauli)

I
D  , F

n
1

I  , F1

Stoner criterium for ferromagnetism:

(expressed for one atom)

Ordering for high DOS at Fermi energy
Atomic moment may not
     be a multiple of 

Remember

B
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5. ITINERANT MAGNETISM  –  Magnetic ordering

From: Coey

=2.17B
S=2.09B

=1.71B
S=1.57B

=0.58B
S=0.53B

Band structure calculation of the 3d series (magnetic state)
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5. ITINERANT MAGNETISM  –  Magnetic ordering

From: Coey

Slater-Pauling plot

(4s + 3d filling)

Relevance for alloys
Nano-alloys: enhanced moment and anisotropy
   of Co-Fe at interfaces

Notes

Reasonably well explained by a 
rigid flat band model
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Introduction to magnetism – Moments  ToC→

 1. Magnetic moments

 2. Magnetism of single atoms

 3. Moments in fields

 4. Magnetic ordering

 5. Magnetism in metals

 6. Magnetic anisotropy
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6. MAGNETIC ANISOTROPY  –  Crystal electric field and spin-orbit coupling

Physics at play

Crystal electric field: Coulomb 
interaction between electronic orbitals 
and the crystal environment

→ Hamiltonian 

Figures

3d

4f

H c f

Reminder: spin-orbit coupling S and L:

→ Hamiltonian H s o

H c f H s o

10−100 meV1−10 eV

100−500 meV25 meV

3d metals

Major effect:H c f

L is not a good quantum number

Quenching of orbital momentum
 → J~S and g~2

Magnetic anisotropy (see next slide)
Perturbation:H s o

4f metals

Major effect:

H c f

L is a good quantum number

Moments close to atomic values

Magnetic anisotropy (see next slide)
Perturbation:

H s o
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6. MAGNETIC ANISOTROPY  –  Magneto-crystalline anisotropy

Emc=K 1 122222323212K 2122232
Emc=K 1sin

2K 2sin
4K 3sin

6K 3
' sin6sin6 

Cubic symmetry

Hexagonal symmetry

Origin and formalism

Definition: angular dependance of the energy of a magnetic material (F, AF etc.) 
Origin: crystal-field, assisted with spin-orbit in the 3d series.

Group theory is used to predict terms in expansions:

Anisotropy lies at the base of magnets
     and recording
Low symmetry favors high anisotropy
K range from <1 to 107 J/m3 
     in known materials

Consequences and figures

Alloys: allows low symmetry (distortions,
     interfaces, band filling etc.)
Nano: changes lattice parameter and
     symmetry. Cf FeCo: low anisotropy in bulk,
     peak anisotropy at interfaces and steps.

Nano-alloys



Olivier Fruchart  –  School of GdR nanoalloys  –  Fréjus, June 2010  –  p.40

http://perso.neel.cnrs.fr/olivier.fruchart/slides/http://perso.neel.cnrs.fr/olivier.fruchart/slides/Institut Néel, Grenoble, France

6. MAGNETIC ANISOTROPY  –  Magneto-elastic anisotropy

Emel=−S
E
2
3cos2−1 1

2
E 2

Origin and formalism

Definition: dependence of magnetic anisotropy on strain
Origin: can be viewed as the strain-derive of magneto-crystalline anisotropy

Notice: mirror effect to magneto-striction

In principle a third-rank tensor is required:

→ Strain is a second-rank tensor

→ Magnetization is a vector

Simple example of a polycristalline 
sample under uniaxial strain:

Order of magnitude of Lambda: 10-6

Limits coercivity in low-anisotropy
     materials
Underpins effects such as invar
Magneto-striction is used in actuators

Consequences and figures

E Young's modulus

Alloys: composition changes Emel
Nano: huge strain. Non-linear terms
     (largely unknown) play the leading role.

Nano-alloys
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