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Magnetism in products

Modern applications of magnetism

Where does 'nano' contribute ?

Nanoparticles

Ferrofluids

MRI contrast

Hyperthermia

Sorting & tagging

Materials

Magnets
(→ motors and 
generators)

Transformers

Magnetocaloric

Data storage

Hard disk drives

Tapes

MRAM

Sensors

Compass

Field mapping

HDD read heads
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Introduction to magnetism

 1. Fields, moments, materials

 2. Magnetization processes

 3. Low dimensions



Olivier Fruchart  –  Séminaire de Physique, PHELMA  –  Grenoble, 2014/12/08  –  p.4

Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

FIELDS and MOMENTS – Currents produce magnetic field

μ

Magnetic dipole

Magnetization

Magnetic moment

Oersted field Magnetic material

Magnetic dipole

Maxwell equation : Electric currents produce magnetic fields

Induction B, Magnetic field H, Magnetization M

∇×B=μ0 j

B=μ0(H+M)

A/m

A.m2 A.m2

Bθ=
μ0 I

2π r B=
μ0

4π r3

 ×[ 3
r2 (μ .r)r−μ]
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FIELDS and MOMENTS  –  Types of magnetic order

Ferromagnet Antiferromagnet Ferrimagnet Helical

Fe CoO Fe3O4 Dy

Magnetic exchange

between microscopic moments

Magnetic ordering

Ordering temperature

M s=1.73×106 A /m

T C=1043 K

J=3/2

T N=292 K T C=858 K

M s=480 kA /m

T∈85−179 K

μ=10.4μB

E=−2∑
i> j

J i , jSi .S j

J i , j0 J i , j0 J i , j0 J 1 , J 2 
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FIELDS and MOMENTS – Magnetic periodic table

Periodictable.com 

Magnetic properties at room temperature, single elements
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Introduction to magnetism

 1. Fields, moments, materials

 2. Magnetization processes

 3. Low dimensions



Olivier Fruchart  –  Séminaire de Physique, PHELMA  –  Grenoble, 2014/12/08  –  p.8

Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

MAGNETIZATION PROCESSES – Hysteresis loops
Manipulation of magnetic materials:

 Application of a magnetic field→
Zeeman energy: 

Spontaneous magnetization

Remanent magnetization

Coercive field

Other notation

Magnetic induction

Losses

J=μ0M

B=μ0(H+M)

EZ=−μ0H .M

W=μ0∮(H . dM)
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MAGNETIZATION PROCESSES – Types of magnetic materials

Soft magnetic materials

Transformers

Flux guides, sensors

Magnetic shielding

Hard magnetic materials

Permanent magnets, motors

Magnetic recording

Hext

M

Hext

M
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MAGNETIZATION PROCESSES – From bulk to nano

Numerous and complex
magnetic domains

Small number of domains,
simple shape

Magnetic
single-domain

Microfabricated dots
Kerr magnetic imaging

Nanofabricated dots
MFM

Bulk material Mesoscopic scale Nanometric scale

FeSi soft sheet

A. Hubert, Magnetic domains A. Hubert, Magnetic domains Sample courtesy :
N. Rougemaille, I. Chioar

Nanomagnetism ~ mesoscopic magnetism How small is 'Nano' ?
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Introduction to magnetism

 1. Fields, moments, materials

 2. Magnetization processes

 3. Low dimensions
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MAGNETIZATION PROCESSES  –  Micromagnetism, continuous approach

Magnetization vector M

Can vary in time and space.

Mean-field approach possible:

Modulus is constant
(hypothesis in micromagnetism)

Exchange interaction

Atomistic view :

Micromagnetic view :

(total energy)

(energy per unit volume)

Magnetization

E =−2∑
i> j

J i , jSi .S j

Si .S j=S
2 cosθi , j≈S

2
(1−θi , j

2
/2)

E=A(∇ .m)2

mx
2
+my

2
+mz

2
=1

M=(
M x

M y

M z
)=MS(

mx
my
mz
)

MS=MS(T )
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MAGNETIZATION PROCESSES  –  Micromagnetism, various types of magnetic energy

1

2

Exchange energy Magnetocrystalline anisotropy energy

Zeeman energy Dipolar energy

Emc=K sin2
θ

Ed=−
1
2
μ0M.HdEd=−μ0M.H

Eex=A (∇ .m )
2
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MAGNETIZATION PROCESSES  –  Dipolar energy

+
+
+ +

-
-
- -

+ + + + + + + + + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - -

+ + +

Examples of magnetic « charges »
Notice: no charges
and E=0 for infinite

cylinder

+ + + + +

+ + + +

- - - -

Charges on
surfaces

Surface and
volume charges

Dipolar energy favors alignement of magnetization with longest direction of sample 

Take-away message

Maxwell equation → div (Hd)=−div (M)

ρ(r)=−M S div [m(r)]

σ (r)=M Sm (r).n(r)

→ volume density of magnetic charges

Magnetic charges

→ surface density of magnetic charges
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MAGNETIZATION PROCESSES – From bulk to nano

Numerous and complex
magnetic domains

Small number of domains,
simple shape

Magnetic
single-domain

Microfabricated dots
Kerr magnetic imaging

Nanofabricated dots
MFM

Bulk material Mesoscopic scale Nanometric scale

FeSi soft sheet

A. Hubert, Magnetic domains A. Hubert, Magnetic domains Sample courtesy :
N. Rougemaille, I. Chioar

Nanomagnetism ~ mesoscopic magnetism
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MAGNETIZATION PROCESSES – Magnetic characteristic length scales

Anisotropy exchange length

Exchange Anisotropy

Hard Soft

Anisotropy exchange length:

Dipolar exchange length

Exchange Dipolar energy

Single-domain critical size
relevant for nanoparticules
made of soft magnetic material

Notice:
Other length scales: with field etc.

Often called Bloch parameter
or domain-wall width

Dipolar exchange length:

Often called Exchange 
length

E=A (∂xθ )
2+K sin2θ

Δu≈1 nm → Δu≥100 nm

E=A (∂xθ )
2
+K d sin2

θ

=√2A /μ0M s
2

Δd≈3−10 nm

K d=
1
2
μ0M S

2

J /m J /m3
J /m J /m3
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MAGNETIZATION PROCESSES – Domain walls and related low-dimensional objects

Bloch domain wall in the bulk (2D)

No magnetostatic energy

Width

Areal energy

Other angles & anisotropy

Domain walls in thin films (2D  1D)→

Contains magnetostatic energy

No exact analytics

Bloch wall

Néel wall

300x800nm

1000x2000nm

F. Bloch, Z. Phys. 74, 295 (1932)

L. Néel, C. R. Acad. Sciences 241, 533 (1956)

Magnetic vortex (1D  0D)→

T. Shinjo et al.,
     Science 289, 930 (2000)

Bloch point (0D)

W. Döring, J. Appl. Phys. 39, 
1006 (1968)

Point with vanishing
magnetizationConstrained walls (eg : in stripes)

Permalloy 
(15nm)
Strip 500nm

Δu=√A /K
γW=4√AK

t≾w

t≿w
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Some examples of recent work

 1. Low-dimensional structures in nanomagnetism

 2. What could come next for magnetism in data storage ?

3. An example of academic study towards 'next'
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An example of academic study – Dimensionality crossover

Vortex
Bloch 
wall

Elongated dots  Breaking of symmetry (2nd order transition)  Order parameter→ →

A. Masseboeuf et al., Phys. Rev. Lett. 104, 127204 (2010)
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How does an ultra-high vacuum setup for epitaxy (single-crystal) growth look like ?
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Choice of a model system – Single crystalline self-assembled structures
Wulff Kaishev’s theorem

i
hi

hint

Supported crystal (growth on surfaces)

P. Müller and R. Kern, Surf. Sci. 457, 229 (2000)
(and incl. ref.)

Truncated crystal

Growth and structure
Stacking: Al2O3(11-20) \ W[10nm] \ Co \ Au

AFM view, 6 mm FoV
Co[11-2]

Co[1-10]

{111}

{001}

{110}

Growth at 450°C

O. Fruchart et al., J. Phys. : Condens. Matter 25,
496002 (2013)
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High-resolution magnetic imaging – Lorentz and holography (TEM based)

Fresnel imaging mode

Sensitive mainly to in-plane components of magnetization
     integrated over the sample’s thickness

Self-assembled
fcc Co dots

(vortex state)

Pascale Bayle-Guillemaud (INAC)
Aurélien Masseboeuf et al. (INAC  CEMES)→
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Evidence for the dimensionality cross-over

Vortex Bloch wall

A. Masseboeuf et al., Phys. Rev. Lett. 104,
127204 (2010)

Vortex

Domain wall
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How does a transmission electron microscope look like ?
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Some reading (general magnetism)

Repository of lectures of the European School on Magnetism: http://magnetism.eu
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Some examples of recent work

 1. Low-dimensional structures in nanomagnetism

 2. What could come next for magnetism in data storage ?

3. An example of academic study towards 'next'
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What is this ?
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Current (past?) technology for magnetic data storage

S. Takenoiri, J. Magn. Magn. Mater. 
321, 562 (2009)

B. C. Stipe, Nature Photon. 4, 484 (2010)

Compromise time stability, writability, readibility
Disruptive solutions sought

Magnetic bits on Hard Disk Drive

Co-based hard disk media : bits 50nm and below

Underlying microstructure

Technological / Physical breakdown
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Magnetic recording over time

1956

RAMAC, IBM, first hard disk drive
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Magnetic recording over time

19981986

Discovery of Giant Magneto-Resistance

→ Nobel prize in Physics 2007

GMR implemented in HDD read heads
X106 increase of density from 1956
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Magnetic recording over time

Physics (recent)
Spin-transfer torques. 

Induces magnetization 
switching, oscillations

Interfacial effects, 
chirality

Technology (to come)
Magnetic Random Access 

Memories (dots)

Logic and memory devices 
based on domain walls. 3D 
memories ?
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Magnetic Random Access Memories

Overview

Current

Current

Detail of a cell (very old design)

MRAM = Magnetic Random Access Memory

Main features:
Solid state memory
Non-volatile and fast
Issues being fixed  entered semiconductor roadmap→

I1

I2

Spin valve

‘Bit’ ligne

Flux guides

Magn flux lines
Conductor
(Cu)

Transistor
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What is next ? What shall we prepare in labs ?

Potentially 3D storage, however
technologically challenging
Cylinders are the 'natural' 
geometry

S. S. P. Parkin, Science 320, 190 (2008)
+ patents (IBM)

Proposal for a race-track memory in 3DMagnetic logic with domain walls
(Field driven)

D. A. Allwood et al., Science 309, 1688 (2005)

Limitation:
Requires homogeneous rotating field
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Some examples of recent work

 1. Low-dimensional structures in nanomagnetism

 2. What could come next for magnetism in data storage ?

3. An example of academic study towards 'next'
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Some of the bottom-up routes implemented at Institut NEEL

Anodization of aluminum → template

H. Masuda, Science 268, 1466-1468 (1995) 

Electroplating → magnetic nanowires

100nm

Simple metals and 
alloys :
Co, Ni, Fe

20
Ni

80

Specific aspects
ALD to reduce pore diameter

100nm

S. Da Col et al., Appl. Phys. Lett. 98, 112501 
(2011) 

Decrease dipolar interactions

Modulation of pore diameter

Landscape for domain walls

The basics

S. Allende et al., Phys. Rev. B 80, 174402 
(2009)
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Nucleate domain-walls – Modulated diameters
Principle

Provides energy
landscape for
domain walls 

Nucleation of domain walls

MFM

AFM

SEM

Protrusions create a 'box' for domain walls

NB : reports with 
modulations however 
no domain walls

K. Pitzschel et al., J. Appl. 
Phys. 109, 033907 (2011) 

Tail-to-tail Head-to-head
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Propagation of domain walls
Experiments

MFM

AFM

SEM

Domain-wall motion demonstrated (range 1-10mT)
Pinning at modulations of diameter

Straight sections

Distribution of propagation 
fields, range 1-10mT

Similar to the case of strips
J. Sampaio et al., J. Appl. Phys. (2013)

Protrusions and constrictions

Pinning field ~30mT
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Details of domain walls

Transverse Vortex

Bloch Néel

Transverse (TW) Bloch-point (BPW)

Domain walls in one-dimensional systems

Need for advanced magnetic microscopies to identify domain walls
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Experiments on a large scale instrument : synchrotron radiation facility

Elettra synchrotron, Trieste, Italy
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Inside a synchrotron ring

Swiss Light Source (SLS), close to Zürich
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XMCD-PEEM microscopy : probing surface magnetization

Courtesy:
W. Kuch

XMCD

Element selectivity

X-ray Magnetic Circular Dichroism

Magnetic sensitivity

PEEM

Photo-Emission Electron 
Microscopy

Secondary electrons  surface sensitive→
Spatial resolution : 25nm

Features
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What does a Photo-Emission Electron Microscope look like ?
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Experimental contrast (XMCD-PEEM)
Two examples

Locate domain walls
Beam along wire

Inspect domain wall
Beam across wire

Several non-trivial patterns
Need for modelling
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Test case : uniform transverse magnetization 
Schematics

Above wire : surface magnetization

In the shadow :  volume magnetization

Non-linear, even change of sign
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Formal identification of domain walls
Bloch-Point Wall (BPW) Transverse Wall (TW)

Experiment Simulation

Orthoradial curling

Symmetry with respect to plane 
perpendicular to axis

Transverse curling

Loss of symmetry with respect to 
plane perpendicular to axis

500nm 300nm

WireWire

Shadow Shadow

Experiment SimulationExperiment

Wire diameter : 95nm Wire diameter : 70nm
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Synthesis – Other systems with chemical routes
Long-range ordered templates

Pre-defined bits

Nanotubes

Multilayered structures
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Figures  –  Strength and weaknesses (« business plan »)

Prospects for HDD :1 Tbit/in2

≈1.5×1011 bit/cm2

Pitch 100nm →

Need 100 bits/wire to overcome HDD 

 Goal 1bit/200nm → 

1010 wire/cm2

20μm

2D patterning → similar to flash

1012 A/m2

10−7
Ω .m

10 mW

10−100pJ

Shift wire registers in parallel
→ not a limiting factor

Determined by R/W (planar) device

Similar to 2D competitors 2D cost + 3D scalability
→ cost/bit decreases

No limitation for 3D fabrication

Practical limitation for energy
consumption

Speed

Areal density Power

Cost per bit

Scalability

Current for spin-torque  

Resistivity  

Power consumption

Energy per bit 
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Collaborative work !
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Daily work in an academic lab

Perform experiments (or simulations, theory)

Develop instrumentation, codes etc.

Reading recent and less recent publications, books etc.

Go to conferences : learn and disseminate

Seeking funding → Grants, equipment, travel etc.

Do some teaching

Organize the lab : scientific life, technical versus scientific activity etc.
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