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SKETCH OF THE LECTURES

Part | - Magnetization reversal
Part Il — Techniques

Part lll - Atomic-scale properties
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MOTIVATING THE LECTURE — The need for nanomagnetism (reminder

Fundamental issues for nanomagnetism

= Is a small grain (ferro)magnetic?

Count number of
surface atoms

= Is a small grain stable against
thermal fluctuations?

k,T (300 K)~4Xx10 * J~25 meV
100k; T (300 K)~2.5 eV

perive from
macroscopic
arguments

& Decades-old (yet still modern) topic

)
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Z> 1. Ferromagnetic order in low dimensions

= Structure and magnetic order
= Magnetic moments (surfaces etc.)
= Magnetic ordering (thermal effects)

ﬁ> 2. Magnetic energy anisotropy

Z> 3. Interfacial effects
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1. FERROMAGNETIC ORDER — Metastable phases (fcc Fe)

Properties of bulk Fe

(P, T) ambiant conditions

Body-Centered Cubic (bcc)
Ferromagnetic

~2.2 u, atom

T.=1043 K

T>1185 K

Face-Centered Cubic (fcc, y-Fe)

No magnetic order

Robustness of ferromagnetic orders

Theory: phase diagram of fcc iron (Fe)

120 - Fe (fcc)

&
—
-
Ll
=

— 2
S 80 ©
o —_
& L L
E I
o -

Ll
W
————————— 0
40
Anti-Ferro
Non—M_
& Low High Spin
0 1 1 | i
2.5 30
Fors {o.u.)

V. L. Moruzzi et al., PRB39, 6957 (1989)
See also: O.K. Andersen, Physica B 86, 249 (1977)

)
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1. FERROMAGNETIC ORDER — Metastable phases (fcc Fe)

Effect of strain on the crystalline structure

Fe/Cu(001)
300K growth with MBE: fcc>bcc

FE

institut

Institut Néel, Grenoble, France

Magnetism of fcc Fe

bce
high spin

1 TD
® PLD

saturation magnetization (arb. units)

fce
raJ
- fce
= low spin
0% 2 2 6

thickness (ML)

L High-spin and low-spin fcc phases?

P. Ohresser et al., PRB59, 3696 (1999)
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1. FERROMAGNETIC ORDER — Metastable phases (fcc Fe)

Spin-density wave antiferromagnetism

o) \| ﬂ\ /m \ Fe/Cu(001)

Ferro.
See also:
H. L. Meyerheim et al.,
» SDW - AF Phys. Rev. Lett. 103,
267202 (2009)
6 ML J; (meV) §ML J; (meV)
1 1
i o 'JLs . t 40
Pt 2 f -Jﬁl2 :s ' JJ]E
6ML 7ML ML 9ML ST Lo T Ty
FIG. 4. Magnetic structures proposed for 6, 7, 8, and 9 ML Fe . '__;_:_-' ol 41 0
on Cu(100); the inset gives the layer dependent magnetic mo- 5 \\ ) 5 AN ]
ments for fcc Fe along the z direction, z(d) = 0 corresponding i i I JM
to the first AFM layer. (Note: all the moments drawn here are 6 f 104 6] == 10 J?S
lying in the planes parallel to the front plane of the structure 7] == 56
section.) ol q / 0

D. Qian et al., PRL87, 227204(2001) Ca
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1. FERROMAGNETIC ORDER — Surface magnetism — Naive views

Surface techniques at OK

e Mossbauer with probe layers
Plot m(t) at OK:

e Magnetometry

e XMCD

(Too) simple picture: band narrowing af surfaces N TTICH BRI LRG0 G

B.ulk S-p d
picture

® Fe/W(110) : 0.14ml(+0.35p;)

® UHV/Fe(110); Ag/Fe(110): 0.26mI(+0.65p;)
® Cu/Ni(111): -0.5ml

® Overlayers: Pd/Ni(111)/Re(0001)

Ea
Surface d
picture K

k

)
/VEE Institut Néel, Grenoble, France

]
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1. FERROMAGNETIC ORDER — Surface magnetism — Towards single atoms

Co/Pt(111)

A
\ Terraces ~ 1 ML A

Ar UI.'I

1.2+

—{ —t
(=) [« B ]
=]
L]

b

1.0

K (meV/atom)
I':J B3

o
=
o

E
=]
©
- 0.84
m
=
-l - : .
0.4 0.8 1.2

ats
0.6 1
FEE'—' L (W / atom)
0.4 4 i i %'_

— 100 A
A. Dallmeyer et al., Phys.Rev.B 61(8), R5153 (2000) 0.2

Conclusions 0 5 10 15 20 25 30 35 40
. _ n (atoms)
® Bulk: m,=0.14H/at. P. Gambardella et al., Science 300, 1130 (2003)

e Surface: m =0.31H,/at.
Conclusions

® Bi-atomic wire: m,=0.37./at.
- Hs/ ® From bulk to atoms:

e Mono-atomic wire: m, =0.68|l,/at. considerable increase of orbital moment

e bi-atom: m,=0.78},/at. ® 2 atoms closer to wire than 1 atom

® bi-atomic wire closer to surface than wire

e atom: m =1.13;/at.
. Gambardella et al., Nature 416, 301 (2002)

Y
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1. FERROMAGNETIC ORDER — Surface magnetism — Polarizability and Stoner criterium

Exchange polarization at interfaces

e
v

Ay /ug

_—

Pd(D)/Ni(111)/Re(0001)

Moment/ Pd atom (ug)

0.4r

Q.3r

0.2

0.1

0.0

J. Vogel et al., PRB55, 3663 (1997)

Fe/Pd multilayers

XMCD

1 2 4 7 4 2 1
Pd monolayers

Conclusion: Pd sigifnicantly
polarized over several layers

NE:

Institut Néel, Grenoble, France

Spontaneous polarization — Stoner criterieum

Small Rh(4d) clusters studied in flight

(Stern-Gerlach experiment)
1.2

E Lo [ Rhodium Clusters

2 oL J

Ez ol

E g 0.8 o

T

E =

g %06

o E

o =

2 04 i

e S

> 0.2

W 2L

=

[ J

0.0 L L - 14
5 10 15 20 25 30 35
Number of Rhodium Atoms

A. J. Cox et al., PRL71, 923 (1993)
A. J. Cox et al., PRB49, 12295 (1994)

Handwavy explanation based on
Stoner criterium Ip, (eg)>1

Conclusion: recuced bandwidth may
even drive ferromagnetism
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1. FERROMAGNETIC ORDER — Magnetic ordering

Elements of theory

® Ising (1925). No magnetic order at T>0K in 1D Ising chain.

® Bloch (1930). No magnetic order at T>0K in 2D Heisenberg.
(spin-waves; isotropic Heisenberg)

® — N. D. Mermin, H. Wagner, PRL17, 1133 (1966)

=
%)

_..__.
e
-

e
w

Jg (T,0)/ TESLA

o
~

0

® Onsager (1944) + Yang (1951).
2D Ising model: Tc>0K

Ni(111)/Re(0001)

Magnetic anisotropy
stabilizes ordering

R. Bergholz and
U. Gradmann,

D= 522

15.7

9.1
6.9
5.5

|

(o)

T

300

400

T/K———

T

N 1 }0
Re (0001)

JMMMA45, 389 (1984)

Tc interpreted with
molecular field

600

)
ML Institut Néel, Grenoble, France

————
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1. FERROMAGNETIC ORDER — Magnetic ordering

Naive model

Molecular field

- nfhngiis
Y 3ky

Z neighbors

Less naive...

1

Thickness-dependant molecular field f 0
8

-) =0

AT (t)~t =

=

v 0
A =1 .

G.A.T. Allan, PRB1, 352 (1970)
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* Re(0001)/Ni(111)
Cultt/Ni Fe(111)/Cu(111)
a W(110)/Ni (111)

x Cul111)/Ni (111)

® W(110)/Fe(110)/Ag

l L ! 1 ! 1 [ L l

0

L)

Conclusion:
Naive views are roughly correct

)
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10 20 30 40 50

U. Gradmann,
Handbook of Magn. Mater. Vol.7, ch.1 (1993)
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1. FERROMAGNETIC ORDER — Magnetic ordering

Effect of lateral size

| T T 1 1 T I
30T wm011(D)/Ag 7
320+ 5
300F 5
>‘:280 [ —®— -
260 r =
o T = LISk H.J.Elmers et al., Phys.Rev.Lett.73, 898(94)
21’0 . '1r o B TQ = 300K
‘ ® T, =800k
220 ] [ ] 1 1 | ]
0 0.2 04 0.6 0.8 1.0 1.2 1.4
D
U. Gradmann, Handbook of Magn. Mater. 7 (1993)
Conclusion

Tc also depends on size of islands
(lateral dimensions)

)
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3. Magnetic anisotropy

Z> 1. Ferromagnetic order in low dimensions

Z> 2. Magnetic energy anisotropy
=> Microscopic origins of Magnetic Anisotropy Energy (MAE)
= Surface versus magneto-elastic anisotropy
= From surfaces (2D) to atoms (0D)

Z> 3. Interfacial effects

)
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2. Magnetic anisotropy — Basics

Dipolar energy

Mutual energy of two magnetic dipoles :

_ fo == 3 el e o]
Eqo-= MMy - — (Hq1).(Mo )
s 4nr3H1 2 2 ? H

Let us assume two magnetic dipoles
with vertical direction, either ‘up’ or ‘down’ :

Eq2(6)= N—03ﬂ1ﬂ 2[1‘ 3C0329] cos?(B)= 1/3
anr
Parallel alignment is favored for § < 0o = 54.74°
Antiparallel alignment is favored for § > 0= 54.74°
‘Cone’ of alignment
il |
{I' '1' Conclusions
il’ il' ® Nanostructures: long axis favored
‘ ® Films: in-plane favored z_ 1 M2
€q = Eﬂo Z

tD

)
E LInstitut Néel, Grenoble, France
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2. Magnetic anisotropy — Basics

Magnetocrystalline anisotropy energy

Electronic cloud

N

Atom nucleus
(crystal structure)

Spin-orbit coupling = the energy of both spin and orbital moment depends on orientation
Series development on an angular basis:

Anisotropy energy _  Normalized magnetization components

Uniaxial Alignement of magnetization

is favored along
+ given axes of the crystal

)
f f[ i Ivier Fruchart - IWOS MASENA - Hanoi, Vietham, Nov.2010 - p.16
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2. Magnetic anisotropy — Basics

Magneto-elastic anisotropy

olofolofelelelalololalolelels

&WOQ@@@WO@W&@@

ool
VUVUUV

~

Origin Result
) ) ) ) _ 2

Distortion of orbitals & crystal field Emel = Kmel,1 cos“(0 )+ ...

Correction to the K ~B.¢
- i mel,i /
magneto-crystalline energy ;
EJEL Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.17
Institut Néel, Grenoble, France
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2. Magnetic anisotropy — Basics

Surface anisotropy

L. Néel, . « Superficial magnetic anisotropy and orientational superstructures »
J. Phys. Radium 15,

15 (1954)

Overview

«—— Breaking of symmetry for
surface/interface atoms

Correction to the

H| y HlHI! |y HIHIHI ' magneto-crystalline energy
Q--w-b@--w-b- , )
ooooooooooooooo’ ES:K81COS (9)+K82COS (9)+

3 y 3

« This surface energy, of the order of 0.1 to 1 erg/cm2, is liable to play a significant
role in the properties of ferromagnetic materials spread in elements of dimensions
smaller than 1004 »

Pair model of Néel:
® Ks estimated from magneto-elastic constants
® Does not depend on interface material

® Yields order of magnitude only: correct value
from experiments or calculations (precision !)

Y
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2. Magnetic anisotropy — Surface anisotropy

Magnetic Anisotropy Energy (MAE): Link with anisotropy of orbital moment
Ab initio calculations
10 eV << 10eV

, High precision needed:

Perturbation theory for 3d metals

- Cr P. Bruno,

MAE = ¢ 4 ML prB39, 865 (1989) N
B 2000 'V :

'L does not rotate in 3d metals —

-> MAE reflects cost in ¢ 5100
Covers magnetocrystalline, magnetoelastic S | o0

and surface anisotropy % oL N B T

>

¢

”
1008, ]
| 0005 0010

-0.005 0.000
A Orbital moment (ug/atom)

Bulk (Fe, N|
hpp = 107%) g /atom ﬁ> MAE < 1 eV o niortstam et al., PRB55, 15026 (1997)

Conclusions
® Origin of MAE = anisotropy of orbital moment

® No strict linearity

® o may also depend on thickness in thin films (band structure)

- Direct measurement of MAE preferable
Olivier Fruchart - IWOS MASENA - Hanoi, Vietham, Nov.2010 - p.19
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2. Magnetic anisotropy — Surface anisotropy

History of surface anisotropy : STEP 1 (1/t plot) First example of perpendicular anisotropy

e(t)

Bulk
T=2AL

v

1/t 17D

U. Gradmann and J. Miiller,
Phys. Status Solidi 27, 313 (1968)

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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2. Magnetic anisotropy — Surface anisotropy

Structural relaxation

Pseudomorphic range
4

Relaxation range
(introduction of dislocation)

S

Strain (a.u.)

t
,tc £ (t) ~ (@substrate abulk)_f'
L

Thickness (a.u.)
W. A. Jesser et al., Phys. Stat. Sol. 19, 95 (1967)

film thickness d ——p»
o0 20 30 40 504

Y\N\m% Co/Cu(111)

misfit { —Pp

Lo
(=] I~

~

S8R

-003

U. Gradmann, Appl. Phys.3, 161 (1974)

)
EEL Institut Néel, Grenoble, France

Effect on anisotropy

Magneto-elastic anisotropy:

kme| - Bmelg

Strain relaxation regime:

k(t)= Kpuik * 0 Brmer /'t

A

Conclusion:

Mixing of surface and
magneto-elastic contributions

o(t)= ky + =S

C. Chappert and P. Bruno., JAP64, 5736 (1988)
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2. Magnetic anisotropy — Interface anisotropy — What use?

Main use in applications : perpendicular magnetic anisotropy

Materials and geometry Magneto-optical recording

Interfacial elements with Why: large magneto-optical response
large spin-orbit: Pt, Au, Pd

Material: 3D-Rare-Earth based

Often: multilayers mark length
- M. T. Johnson et al., ‘ - 5 s
Co/Au film Rep. Prog. Phys. 59, 100 nm
L E——
1409 (1996) MFM ._ - |
NigFe SO -0,
Cu ; _ F
20 nm j \ i TN
I um
. Y laser

T 17T T 7] [(TlL[T

: 110 .
A. Fert et al., J. Magn. Magn. Mater. 200, 338 (1999) | S. Tsunashima, J. Phys. D 34, R87 (2001)

)
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2. Magnetic anisotropy — Interface anisotropy — What use?

Main use in applications : perpendicular magnetic anisotropy

Decreased dipolar coupling in HDD media Enhanced anisotropy for solid-state memories

Longitudinal recording (1956 - ) Concerns MRAM: Magnetic

Random Access Memories

C. Chappert et al., The emergence of spin

electronics in data storage, Nat. Mater. 6,
- | [ [ ] [ | [ > 813 (2007)

Reminder for the thermal stability fo

Perpendicular recording (2005 -) small flat elements:
o5k, T
Hc: 2 K (1 5Ky
u M\~ KV
= In-plane magnetization
S. N. Piramanayagam, J. Appl. Phys. 102, 1 5
011301 (2007) K:NXEHOMS @

=> High anisotropy with low spread angle

. _ L Issue: N is small with flat elements
= Reduced intra- and inter-grain dipolar

Soufgliing = Perpendicular magnetization
See lecture: Laurent RANNO Kméqug

/ ____________________________________________________________________________________________________________________________________________ ]
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2. Magnetic anisotropy — Interface anisotropy — from 2D to atoms

From surfaces (2D) to wires (1D) and atoms (0D) @ Views of the model systems

w STM, 8.5nm, 5.5K

Method
e XMCD

e Fit magnetization curves

Magnetic Anisotropy Energy
® Bulk Co: 40ueV/atom

e Co ML: 140ueV/atom

B 10——‘ Co bi-wire: O.34meV/atom_
; e Co wire: 2meV/atom
= e Co bi-atom: 3.4meV/atom — 100 A
(=] o
g °© e Co atom: 9.2meV/atom
=
) L1, CoPt .
E 4 Conclusions:
x + hep Co . .
| ® Model systems to highlight
trends in applied materials
T o T T e s e e e e ey e ® Anisotropy per atom increases
0 5 10 15 20 25 30 35 40 in low dimensions
n (atoms) :
P. Gambardella et al., Nature 416, 301 (2002) e The TOTAL anisotropy

decreases — Not thermally stable

P. Gambardella et al., Science 300, 1130 (2003)

)
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TABLE OF CONTENTS

Z> 1. Ferromagnetic order in low dimensions

Z> 2. Magnetic energy anisotropy

Z> 3. Interfacial effects

= Exchange bias
= RKKY coupling
= Dipolar effects
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3. INTERFACIAL EFFECTS — Exchange-bias

23333

Oxidized Co nanoparticles

1

Lot I 35
("2‘3 pum) 39
10" wiym?

- 2%
B ()]

Field-cooled hysteresis loops:

> Increased coercivity

> Shifted in field

Exchange bias
J. Nogués and Ivan K. Schuller
J. Magn. Magn. Mater. 192 (1999) 203

"+ "~ :Meiklejohn and Bean, ] ]
Phys. Rev. 102, 1413 (1956), Exchange anisotropy—a review
Phys. Rev. 105, 904, (1957) A E Berkowitz and K Takano
J. Magn. Magn. Mater. 200 (1999)

)
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3. INTERFACIAL EFFECTS — Exchange-bias: what use?

Increase coercivity of layers

AF

F2 —_—

Crude approximation for thin layers:

KAFtAF

H, ,s~Hg|1+ a
F*F

)
EE Institut Néel, Grenoble, France

institut

Application

Concept of spin-valve in magneto-
resistive elements

FeMn Lép ham (phan sit tir)
NiFe/Co 8 Lop bj ham (sét tur)
Cu 8 Lop trung gian (phi tr)
Co/NiFe Lop tu do (st tir)

B. Diény et al., Phys. Rev. B 43, 1297 (1991)

=> Sensors
=> Memory cells

= Etc.

Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.27
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3. INTERFACIAL EFFECTS — RKKY interlayer coupli

Spin-dependent quantum confinement Constructive and destructive
in the spacer layer interferences
=> Maxima and minima of n(e)
=
'y, P : _
Forth & back Coupling strength:
V‘ phase shift E,=J(t)cos6 in J/m?>
2 Ap=qt+de,+
Py b P=qt+P,+ g 9:<m1,m2>
- A .
with: J(t):Fsm(qatPF)
Spin-independent _\)
g=k"—k f\ |
Spin-dependent fon )| |
I'as®PasTpPp ) '(\T C
{// (i) \\\ /// _ (i \\\

P. Bruno, J. Phys. Condens. Matter 11, 9403 (1999)

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Ti 0| V @ Cr @ Mng|Fe @ Co|Ni @ Cug
Cm?r?'n __?__ 3|77 Ferro- Ferro- Ferro- 83
P80.0| 9 [.24]18 Magnet | Magnet | Magnet | 3110

1 _

289 | 262 | 250 | 2.24 2.48 250 | 249 2.56
Zr o|Nb ¢ Mog| Te O Ru Q| Rh iy Pd &| Ag @&
No 9.5[2.5|5.2] 3 3131793 No No
Coupling P Coupling | Coupling

020 % L1211 50111169
3.17 2.86 2.72 271 265 | 2.69 2.75 2.89
Hf O|Ta 9 W ® Re 0Os O|Ir @| Pt @ Au @
No 712 {55( 3 1(42{3.5 413 No No
Coupling Coupling | Coupling
01 % .03} % [.41]10 185/ ¢
313 | 286 | 274 | 274 2.68 2.71 277 | 2.88
ER fec @ bee 'Element
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FI1G. 3. Dependence of the normalized exchange coupling
constant on the 3d, 4d and 5d transition metals in (a) Co/TM
and (b) Fe/TM multilayers.

Note: J(t) extrapolated for t=3A
S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991)
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Hypothesis:

= Two layers rigidly coupled
= Reversal modes unchanged
=> Neglect dipolar coupling

eM —e, M, K:91K1+92Kz
el+e2 el+e2

M=

_ e1M1Hc,1+82M2Hc,2

C
eM —e, M,

— What use? What constraints?

= Increase coercivity of pinned layers

—> Decrease intra- and inter- dot
dipolar coupling

N
AF

Reference
F2, ‘ layer
F2, )
F1 Free

layer

Practical aspects

= Ru spacer layer (largest effect)

=> Control thickness within a few
Angstroms !

)
ML Institut Néel, Grenoble, France
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3. INTERFACIAL EFFECTS — Collective effects: bilayers

Stacked dots : dipolar Stacked dots : orange-peel coupling

In-plane magnetization In-plane magnetization

- ~— =t
4> + -
. . -— — 4>
Out-of-plane magnetization i +
T Always parallel coupling
|
T L. Néel, C. R. Acad. Sci. 255, 1676 (1962)
(valid only for thick films)

Hint: J. C. S. Kools et al., J. Appl. Phys. 85, 4466 (1999)
An upper bound for the (valid for any films)
dipolar coupling is the

self demagnetizing field Out-of-plane magnetization

May be parallel or antiparallel

Notice: similar situation as for
J. Moritz et al., Europhys. Lett. 65, 123 (2004)

RKKY coupling

/
EE Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.31
Institut Néel, Grenobl F . :
— e VRNl http://perso.neel.cnrs.fr/olivier.fruchart/slides/




3. INTERFACIAL EFFECTS — Collective effects: range of interaction
| Upper bound for dipolar fields in 2D Non-homogeneity of dipolar fields in 2D

Estimation of an upper range of Example: flat stripe with
dipolar field in a 2D system thickness/height = 0.0125
0.25

2nrdr/ Integration

" . 3
] Local dipole: 1/r o /\'\\j \

Ha(R)< f

Hy(R)|< Cte+ 1/R -
Average
Convergence with finite radius 0.00 ‘
(typically thickness) 0 Position (a.u.) 100 200

S Dipolar fields are weak and short-ranged in 2D or even lower-dimensionality systems
& Dipolar fields can be highly non-homogeneous in anisotropic systems like 2D

% Consequences on dot’s non-homogenous state,
magnetization reversal, collective effects etc.

)
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Magnetic field and moments :
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* NMaterials
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@ [2009] Magnetic field, Origin of magnetism, Spin and orbital magnetic moments, Crystal field, Magnetism of free
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MNanoparticles, microstructures ete
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Applications and interdisciplinary magnetism

Open sessions
Exchange, magnetic ordering, magnetic anisotropy T -

Exchange and magnetic ordering

@ [2009] Exchange interactions: exchange, super-exchange, RKKY, Stoner ferromagnetism: TOMASZ DIETL, Warsaw, Poland. [ Abstract | Slides ]

@ [2009] Magnetic Order: different types, dimensionality effects, number of components (Ising, XY, Heisenberg): PETER DE CHATEL, Amsterdam, The Netherlands. [ Abstract | Slides
° ][2009] Magnetism at finite temperature: molecular field, phase transitions: CLAUDINE LACROIX, Institut Néel - Grenoble, France [ Slides ].

Magnetic anisotropy

@ [2009] Magnetic anisotropy and how it can be controlled: DIRK SANDER, MP/-Halle, Germany. [ Abstract | Slides |

Low-dimensional and surface magnetism

@ [2003] Low dimensional magnetism - experiments:_O. FRUCHART [ Abstract | Slides |

# [2003] Low dimensional magnetism : the role of the electronic structure: H. DREYSSE [ Content | Abstract |
@ [2003] From the atom to magnetic nanoparticles: E. BONET [ Abstract | Slides ]
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Charte graphique — ToC

. Overview of self-organization processes

Z> 1. Introduction

Z> 2. Self-assembled epitaxial growth

Z> 3. Self-organized epitaxial growth
Z> 4. Engineered and 3D self-organization
Z> 5. Perspectives of self-organization

Z> 6. X-ray investigation of SO systems
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