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Common lanquage

Advanced point: fasten seat belt

Slippery topic: be cautious

Blackboard explanation
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MOTIVATING THE LECTURE — Miniaturization is a key for technolog

Telegraphone
(1898, W. Poulsen)

v

s Same concept over 100 years
s Technological innovation?
O New science?

| T
RAMAC (IBM, 1956)
2 khit/in?

50 disks @ 60 ¢cm
Total 5Mo

)
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Modern hard disk
drive (>1 To)
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MOTIVATING THE LECTURE — The principle of magnetic recording (hard disk drives

Principle of hard-disks

Read/Write head

z
—
o
o
S
3

~7-8nm

Substrate
Shielding
_, Shielding ,

Disk >

(rotation 7000-10000 rpm)

See lecture: L. Ranno S. akeoiri, J. Magn. Magn.Mater.
321, 562 (2009)
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MOTIVATING THE LECTURE — The need for nanomagnetism

Fundamental issues for nanomagnetism

= Is a small grain (ferro)magnetic?

Count number of
surface atoms

= Is a small grain stable against
thermal fluctuations?

k,T (300 K)~4Xx10 * J~25 meV

100k; T (300 K)~2.5 eV

Derive from
macroscopic
arguments

& Decades-old (yet still modern) topic

= Are there domains, domain walls?
— See later on...

} ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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MOTIVATING THE LECTURE — The need for spin electronics

The technological need for spin electronics

=> How to read information?
— Convert magnetic
information to electric signal

= Field of spin electronics
« Magneto-transport.

« Requires nanometer length
scales
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T
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Coils

~7-8nm

Substrate
Shielding
Shielding

g — | | e e el | | e el |

& Official birth: discovery of magneto-resistance

N. M. Baibich, Phys. Rev. Lett. 61, 2472 (1998)
G. Binach, Phys. Rev. B 39, 4828 (1989)

U Novel prize 2007: A. Fert & P. Griinberg

Disk >
(rotation 7000-10000 rpm)

See lecture: L. Ranno
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MOTIVATING THE LECTURE — Controlling magnetization reversal
Magnetic domains: from macroscopic to small systems

Bulk material Mesoscopic scale Nanometric scale

Numerous and complex Small number of domains, Magnetic
magnetic domains simple shape single-domain

e

A K A AN N

-

Microfabricated dots
Kerr magnetic imaging
A. Hubert, Magnetic domains A. Hubert, Magnetic domains

Co(1000) crystal —- SEMPA
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R.P. Cowburn,

i i — : i J.Phys.D:Appl.Phys.33,
Mlcromugne’rlsm mesoscoplc mugne’rlsm R1 (2000)
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SKETCH OF THE LECTURES

Part | — Magnetization reversal
Part Il — Techniques

Part lll - Atomic-scale properties

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Techniques — See local excellent expertise

PHAM HONG QUANG

TR LY

CAC PHEP DO TU

Part Il — Techniques

=
@ L 304 A7 AN DA HOC GUBC GIA WA NOI

)
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MAGNETIZATION REVERSAL — To(

ﬁ> 0. Introduction

ﬁ> 1. Energies and length scales in magnetism

Z> 2. Single-domain magnetization reversal

Z> 3. Magnetostatics

Z> 4. Magnetization reversal in materials
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1. ENERGIES AND LENGTH SCALES — Hysteresis and magnetic materials

Manipulation of magnetic materials:
s Application of a magnetic field Spontaneous # Saturation

Zeeman energy: EZ = - I gH.Mg

Spontaneous magnetization M,
Remanent magnetization M,

MA — An ther_ notation
A/ Js_ uO Ms
Coercive field H.
Hext
>
Losses
P

E = Pﬂ o . dM

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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1. ENERGIES AND LENGTH SCALES — Soft and hard magnetic materials

Soft materials Hard materials

MA

| Hext Hext

Transformers
Flux guides, sensors Permanent magnets, motors
Magnetic shielding Magnetic recording

Y
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1. ENERGIES AND LENGTH SCALES — Sources of magnetic energ

Echunge energy

(B

E Ech

- JLle.Sz
2

Leeman energy (enthalpy) Dipolar energy

E,=-l Oﬁs.ﬁ

\ V4 ______________________________________________________________________________________________________________________ ]
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1. ENERGIES AND LENGTH SCALES — Magnetic characteristic length scales

Typical length scale:
Domain all widh

sou Bloch parameter: A=VA/K

Munh

| l

I &E‘/ A~1nm — A>100 nm

W Do rrvai  Wall Width Hard Soft
Atomic % Qﬁk/

Bloch wall width: mTA=mVA/K

Dipole

E=A(60/0x) +K sin0
Exchange Anisotropy
J/m \—'J/m3

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
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1. ENERGIES AND LENGTH SCALES — Magnetic domains

Bulk material Mesoscopic scale Nanometric scale

Numerous and complex Small number of domains, Magnetic
magnetic domains simple shape single-domain

/.

poow

AL

%
_ WoN AR NN KN
CT PP oW M KK KW K K W
s - v XK WK w W W
. . N A A R
Co(1000) crystal — SEMPA | | Microfabricated dots RN
Kerr magnetlc Imaging i j i ::/ﬁ" L ; i v
A. Hubert, Magnetic domains A. Hubert, Magnetic domains RV :: :: :: o & :'c
A W ok ol
R.P. Cowburn,
Nanomagnetism ~ mesoscopic magnetism Lol e DR e,
R1 (2000)
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MAGNETIZATION REVERSAL — To(

ﬁ> 0. Introduction

ﬁ> 1. Energies and length scales in magnetism

Z> 2. Single-domain magnetization reversal

Z> 3. Magnetostatics

Z> 4. Magnetization reversal in materials
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2. SINGLE-DOMAIN REVERSAL — Coherent rotation (1/4

Framework

Approximation: 0.m=0 (uniform magnetization)
(strong!)

C:. 9, 7
5:EV:V[Keff 1n29—uOMSHcos(9—6H)]

I(eH::I(nm_FI(d

0 M
Dimensionless units: e =6/KV
h =H/H,

e=sin"0—2hcos(0—0,,) H, =2K/u,M,

L. Néel, Compte rendu Acad. Sciences 224, 1550 (1947)
E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal. Soc. London A240, 599 (1948)

IEEE Trans. Magn. 27(4), 3469 (1991) : reprint
Names used

& Uniform rotation / magnetization reversal

% Coherent rotation / magnetization reversal

Q>Mucrospin efc.

)
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2. SINGLE-DOMAIN REVERSAL — Coherent rotation (2/4

Example for 0,=180° ——» e=sin"0+2hcos0

Equilibrium states

d,e=2sin0(cos6—h) 0p,e=0 |:>|

-90°  0° 90° 180° 270°

Stability

0,06 =2c0s20—2hcos6 9,.e(0) =2(1-h

=4cos 0—2—2hcos0 0,,e(0) =2(h°—1)
dype(m) =2(1+h)

Energy barrier
Ae

=e(0,,,,)—e(0)
=1—h°*+2h*—2h h =1

( ‘) H =H,=2K/u, M,

2
=(1—h)
~——__ ~
cx . .
@ (1—h)" with exponent 1.5 in general
/Véﬂ . Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.18
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2. SINGLE-DOMAIN REVERSAL — Coherent rotation (3/4

Hysteresis loops

I I [
1 .
-~
M /
0 I 900 ]
// 100 ¥
-1 _/,J —
| | | | |
-1.5 -1 -0.5 0 0.5 1 h 1.5

0,=0 > Easy axis of magnetization

6, =m/2 = Hard axis of magnetization

WA

-90°

90° 180° 270°

OO

Switching field = Reversal field

A value of field at which an irreversible
(abrupt) jump of magnetization angle occurs.

Can be measured only in single particles.

Coercive field
The field for which M.H=0

(0=0,=*m/2)

Used to characterize real materials
(large number of ‘particles’).

May be or may not be a measure of the mean

switching field at theMrI]icroscopic level

A/
SV

V4 . ___________________________________________________________________________________________________________________________________
/VEEL Institut Néel, Grenoble, France
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2. SINGLE-DOMAIN REVERSAL — What is the use of easy and hard axes?

A

= High +/- remanence
= Coercivity

Memory, permanent magnet etc.

= Reversibility
= Linearity

Sensor, shielding etc.

)
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2. SINGLE-DOMAIN REVERSAL — Coherent rotation (4/4 T
‘Astroid’ curve: switching field EASY — 77— ~HARD N\
90 H H
HSW(QH) 120 \O/\J/ \O/l\/
H=0
150 —9b° (IJ Q(IJ" 1é0° 2|70° -9I0° (IJ 9&)" 18‘0" 2I70°

180 : : H .
' H H
210 : w: O.7§\D::@/
270
> Hgy(0y) is one signature of H = Ha

reversal modes

J. C. Slonczewski, Research Memo RM \ j J

003.111.224, IBM Research Center (1956) N~

)
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2. SINGLE-DOMAIN REVERSAL — Experimental relevance

Size-dependent magnetization reversal

H,,, (00)

H_.(0e)

100

S50

(a)

— 1321 Hz
- = L3211

' —-=— 0.01321 Hz

100 F

50F

S0 F

-100 b

s 0.2x0.51
-100 -50 0 50 100
H,, (Oe)
(c)
. ¥0.2x0.751
-100 . -50 . a ‘ 50 ] 100
H_, (Oc)

J. Z. Sun et al., Appl. Phys. Lett.

H, bl (Oe)

H,,,(0c)

78 (25), 4004 (2001)

100 F

S50p

=
T

SOF

ok

100 F

S0pF

=
T

S0k

=100 F

Size in micrometers

Astroids of flat magnetic elements with increasing size

Conclusion over coherent rotation

(b)
S The simplest model
3750 75' S Fails for most systems because
O/ XU. /O]
% [they are too large: apply model
H,., (©0) with great carel..
L Y He<<Ha for most large systems
(thin films, bulk): do not use Hc to
estimate K!
| | [Early known as Brown’s paradox
27x1.37
Hm{{le)

N

Institut Néel, Grenoble, France
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2. SINGLE-DOMAIN REVERSAL — Thermal activation (1/2

\lh=p, M H/2K|

h=o0.2

e

J. Appl. Phys. 99, 08Q514 (2006)

O <

0.30

e applied field 0.01 T

.

B s
0.25- @
0.20 ] §
EE '8
o 0.151 §
L D 504
=£ 0.10- g 0 =

0.05+
|

0.00

0 &80 XG0
Temperature (K}

3

Temperature (K)

0 50 100 150 200 250 300 350 400

Barrier height Thermal activation

Ae=e(0,,)—e(0)=(1—h|

Brown, Phys.Rev.130, 1677 (1963)

aé —> Aé6=kyTIn(7/7,)
kyT

T ~10 S

(0)

T=T,exp

Lab measurement: T~1s ——> A&~25k,T

o K 25k, T
— g 2K [, [255%T
I u, Mg KV

Blocking temperature
"| T,~KV/25k,

‘ Ll

> T

E. F. Kneller, J. Wijn (ed.),
Handbuch der Physik XIII/2: Ferromagnetismus,
Springer, 438 (1966)

M. P. Sharrock, 1. Appl. Phys. 76,
6413-6418 (1994)

Notice, for magnetic recording : T~10" s

KV ~40—-60k,T

N

Institut Néel, Grenoble, France
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2. SINGLE-DOMAIN REVERSAL — Thermal activation

Formalism for superparamagnetism

Energy
E=KVf@.8)- popH

BE = df(8,0)- hy

Partition function Average moment
Z:Zexp(-/}E) <y o>= 1 02
PuoZ oH

C. P. Bean & J. D. Livingston, J. Appl. Phys. 30, S120
(1959)

Isotropic case

A j_MMexp(- BE)du

Note: equivalent to
integration over solid angle

<) >= M[cotanh(x)— 1/x]

Langevin function

Note:
Use the moment M of the

particule, not spin 2.
X = BuoMH

)
/VEEL Institut Néel, Grenoble, France

Infinite anisotropy

Z = expl B oMH) + expl- fu oMH)|
< [l >= M.tanh(x)

Brillouin %% function

00 )(,O;O’(LY)COXDCO(LO(DC g0 o)

o’ B ri | I O U i n B M mﬂnﬁfﬂxﬂmﬂx 0
dﬁﬂﬁ) ‘ .
- Langevin

\ \ | L
2 4 6 8
X
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2. SINGLE-DOMAIN REVERSAL — What use for nanoparticles? (1/2

Ferrofluids

= Principle => Example of use

Surfactant-coated nanoparticles, Seals for rotating parts
preferably superparamagnetic

— Avoid agglomeration of the particles
— Fluid and polarizable

Housing

Pole Piece
Magnet

Ferrofluid
Flux Path

R. E. Rosensweig, Magnetic fluid seals,
US patent 3,260,584 (1971)

http://esm.neel.cnrs.fr/2007-cluj/slides/vekas-slides.pdf

)
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Health and biology RAM (radar absorbing materials)

= Principle

Beads = coated nanoparticles,
preferably superparamagnetic
— Avoid agglomeration of the particles

= Cell sorting
F=Vu.B

MA

= Hyperthermia /

Use ac magnetic /
field

1_\/11’1(T/T0)kBT
KV

Hc:Hc,o

=> Contrast agent in Magnetic

Resonance Imaging (MRI) Q‘/j

2. SINGLE-DOMAIN REVERSAL — What use for nanoparticles? (2/2

Absorbs energy at a well-defined
frequency (ferromagnetic resonance)

d—g—r— XH=pu yIxH
dt_ _I'lol'l _l’loy
du AB
——= xXH
‘ de HoVH dp/dt
B

e
= — —<O
Y gJ2me

yJ/2m ~ 28 GHz/T

]
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2. SINGLE-DOMAIN REVERSAL — What can we learn from thermal activation?

» T
Estimate for K i
If K known,
estimate for V
£/£ Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.27
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MAGNETIZATION REVERSAL — To(

ﬁ> 0. Introduction

ﬁ> 1. Energies and length scales in magnetism

Z> 2. Single-domain magnetization reversal

Z> 3. Magnetostatics

Z> 4. Magnetization reversal in materials

)
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3. MAGNETOSTATICS — Notations

Magnetization

N

1M, 0 1m, [
Magnetization vector M > M- @My @ = Mg @my @
May vary over time and space. M, 1Mz [
: 2 2 2 _
Modulus is constant > Myt myt+ my =1

(hypothesis in micromagnetism)

Mean-field approach possible: M.=M(T)

Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.29
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3. MAGNETOSTATICS — Treatment of dip

Density of dipolar energy Eq(r)= - 3 oM(r)Hy(r)

By definition div(Hy) = - div(M). As curl(Hy) = 0 we have (analogy with electrostatics):

divim(r')].(r'-r)

4nr - r°

Hy(r) = - M| d*r

space

p(r)= -Mcdiv[m(r)] is called the volume density of magnetic charges

To lift the divergence that may arise at sample boundaries a volume
integration around the boundaries yields:

0
0

ok divim(r')L.(r'-r) 3, [m(r' )n(r)1.(r'-r) o,
Hy(r)= Msq- Jjjspace PR —d°r'+ Hsample - pT: d“r

0 (r)= Mgm(r)n(r) is called the surface density of magnetic charges,
where n(r) is the outgoing unit vector at boundaries

Do not forget boundaries between samples with different M

Y
EEL Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.30
metitut AR Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/




3. MAGNETOSTATICS — Treatment of dip

Some ways to handle dipolar energy

Integrated dipolar energy: Notice: six-fold integral over space:
__1 non-linear, long-range, time-consuming.
& 2u()I'[J'SampleM.Hd.dV

Bottle-neck of micromagnetic calculations

Usefull theorem for finite samples:

g = - %“OmsammeM'Hd'dV = %yoj,”spaceHg'dv

=& is always positive

Significance of (BHmax) for permanent magnets

= 380 [[epme M+ Ho)HadV = - Juo[[[ B.HqdV
f

pa 340 fpmotsampe 59V T

Energy available outside the sample, ie usefull for devices ——

/ . _________________________________________________________________________________________________________________________________________________ ]
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e

v v v
\ 4 \ 4 \ 4
\ 4 \ 4 \ 4
\ 4 \ 4 \ 4
\ 4 \ 4 \ 4

_>+
—_
—_—
I T

v v v
v v v

\:A
\
_r
—
7

> > > 4 Notice: no charges
> > + + and &=0 for infinite
R R .+ :
g g g cylinder
+ + + + + + + + +
Charges on
surfaces
Surface and
volume charges
X

N

Institut Néel, Grenoble, France
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3. MAGNETOSTATICS — Demagnetizing coefficients (1/3

Assume uniform magnetization M(r)= M= Mg\m,x+ m,y+ m,z|= Mgm;u,

Density of surface charges

_ [m.n(r')].(r'-r) 2,
Hq(r)= MS”sampIe AT Hr_ e d°r

_ n(r').(r'-r) o,
= AﬂSfTHIIganuﬂe ‘;n‘h._ r'3 der

o(r)=—M;m(r).n(r)

@
o
[

- %NO”.[sampleHd(r).M.dSr
L OMSzmi,[.[Jsample d3r”33mp|e arr - r|

n;(r').(r;'-r;)
) KdmimiI”sample d:‘}r”sample I4n Hr _jr- 31

n;(r').[m.(r'-r)

] 2.,
3 dr

d2r-

15d = ,<d\/rdyfrﬁrnv - F(db“Tl;iJ11

See more detailed approach: M. Beleggia and M. De Graef, J. Magn. Magn. Mater. 263, L1-9 (2003)

)
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3. MAGNETOSTATICS — Demagnetizing coefficients

&4 = KgNjm;m; = Ky'mNm N is a positive second-order tensor
< Hy(r)>= - M;Nm ...and can be defined and diagonalized
for any sample shape
W, 0 op 8= Ke(Numi+ Nymy+ Nmg)
N = @ O N, O @ < Hgi(r)>= -MgN; <«—— Valid along main axes only!
10 0 Nt Ny+ N, + N, =1

What with ellipsoids???

Self-consistency: the magnetization must be at equilibrium and therefore fulfill m//H

B Assuming H, e @Nd H, are uniform, this requires Hy(r) is uniform. This is satisfied

only in volumes limited by polynomial surfaces of order 2 or less:

slabs, cylinders, ellisoids (+paraboloids and hyperboloids).
J. C. Maxwell, Clarendon 2, 66-73 (1872)

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
EEL Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.34
Institut Néel, Grenoble, France

http://perso.neel.cnrs.fr/olivier.fruchart/slides/




3. MAGNETOSTATICS — Demagnetizing coefficients (3/3

-1 : :
1 “ [ 52 2 2 2 0 General ellipsoid:
zabef da £ W@+ 1 )(b2 41 ) 1)y an T RS (R

For prolate revolution ellipsoid:
(a,c,c) with a=c/a<1

Ny =Ny = 5(1' Ny)

2
Asinh@ =6 Ew
i i

CrcC1c/

Asi H\/OI 2 - 1 HH For oblate revolution ellipsoid:
sin s
H a HH (a,c,c) with a=c/a>1

0; Ny =cl(btc); N,=bl(b+tc) Foracylinderalong x

J. A. Osborn, Phys. Rev. 67, 351 (1945).

For prisms, see: A. Aharoni, J. Appl. Phys. 83, 3432 (1998)

More general forms, FFT approach: m. Beleggia et al., 3. Magn. Magn. Mater. 263, L1-9 (2003)
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3. MAGNETOSTATICS — Application of demagnetizing coefficients (1/3

Magnetization loop of a macrospin along a hard axis

e=sin"0—2hcos(0—0,) Hard axis: 0, =m/2
A g ~H
H
| K=N,K, 7/
|5 with: K ,==pu M:
2
H, 9
M
—> H, =2K/u M,
=NiMS

Example for sensor
= Large Ni — Large linear range — Low susceptibility & sensitivity
= Small Ni — High susceptibility & sensitivity — Small linear range

/ . _________________________________________________________________________________________________________________________________________________ ]
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3. MAGNETOSTATICS — Application of demagnetizing coefficients

Magnetization loop of a macrospin along an easy axis

e=sin"0—2hcos(0—0,) Easy axis: 6,=m

A By,
K=N,K, /

with: Kd:équg

> ¢
Reversal field H, ~2K/u, M M
~N;Mg

Thermal stability A& =KV =k;T In(7/7,)

Example for memory
=> Small Ni — Low switching field (low power!) H
= Large Ni — Good thermal stability <
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3. MAGNETOSTATICS — Compensation of di

ealy s

N=0 (slab, infinite cylinder) N=0 (slab, infinite cylinder)

N>0 (here N=1: slab, perpendicular) N>0 (here N=1: slab, perpendicular)
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3. MAGNETOSTATICS — Domain walls in thin films

Bloch versus Néel wall

Crude model: wall is a uniformly-magnetized cylinder with an ellipsoid base

_ W
Bloch wall ® @ ® Ed - Kd 2t Thickness t
Wall width W
Néel wall ® C » Ed - Kdﬁ

L. Néel, Energie des parois de Bloch dans les couches minces,
C. R. Acad. Sci. 241, 533-536 (1955)

Conclusion

S At low thickness (roughly 7= W) Bloch domain walls are expected to
turn their magnetization in-plane > Néel wall

% Model needs to be refined
& Domain walls not changed for films with perpendicular magnetization
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3. MAGNETOSTATICS — Magnetic vortices (‘1D domain walls')

500
a 400 [ © © © 7 TIIIIIIIIIIET -5"1;
= Vortex state o sy © S
— 300 — o o} o} — ES
S gy
© o
% 200 - gg
o p— = t g
Rli00 F - 3=
; : : AR
Single domain state 8 Onm
0 o &

0 5 10 15 20

Disk thickness (hexch)

Thickness (nm) =y

Zero-fiel
R.P. Cowburn, ero-field tD= 20) gx (E/

J.Phys.D:Appl.Phys.33, R1-R16 (2000) Cross-over

> Vortex state (flux-closure) dominates at large thickness and/or diameter
% The size limit for single-domain is much larger than the exchange length
S Experimentally the vortex may be difficult to reach close to the transition (hysteresis)

)
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3. MAGNETOSTATICS — Magnetic characteristic length scales

Typical length scale:
Domain all widh

sou Bloch parameter: A=VA/K

Munh

| l

I &E%/ A~1nm — A>100 nm

W Do rrvai  Wall Width Hard Soft
Atomic % Qﬁk/

Bloch wall width: mTA=mVA/K

Dipole
2 - Notice that several definitions for
E=A(00/0x| +K sin®0 the Bloch wall width have been
Exchange Anisotropy proposed, e.g. with 7 or 2 as
‘ 3 prefactor
J/m J/m

/ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________
EEL Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.41
Institut Néel, Grenoble, France

http://perso.neel.cnrs.fr/olivier.fruchart/slides/



3. MAGNETOSTATICS — Magnetic length scales

Typical length scale:
Exchange length A

Quality factor Q
e:-

e= Aldb /dx)*+ Kysin?9

Exchange ‘ Dipolar energy
J/m Jim?

dex = JATKj
- \/2A//JOM§
Aoy = 3-10nm

Critical size relevant for
nanoparticules made of
soft magnetic material

D; = ”\/gAex

Generalization for various shapes

D, = 16A/(Nk o)M2

-Ksin?§ + Ky sin® 4

‘ ‘ Dipolar energy
J/m Jim®

Q: K/K,

Relevant e.g. for stripe domains in
thin films with perpendicular
magnetocristalline anisotropy

Critical size for hard magnets

DC = 6EW /Kd = 25Q/\B

E,, = 4VAK for hard magnetic materials

Notice:
Other length scales: with field etc.

]
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MAGNETIZATION REVERSAL — To(

ﬁ> 0. Introduction

ﬁ> 1. Energies and length scales in magnetism

Z> 2. Single-domain magnetization reversal

Z> 3. Magnetostatics

Z> 4. Magnetization reversal in materials

)
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4. COERCIVITY IN MATERIALS — Nucleation and propagation (1/3

Brown’s paradox Micromagnetic modeling
2K . . . . .
In most systems H, < Exhibit analytic hov_vev_er realistic
po Mg models for magnetization reversal
PHYSICAL REVIEW VOLUME 119, NUMBER 1 JULY 1, 1960

Reduction in Coercive Force Caused by a Certain Type of Imperfection

A, AHARONI
Department of Electronics, The Weizmann Institute of Science, Rehovol, Israel

(Received February 1, 1960)

As a first approach to the study of the dependence of the coercive force on imperfections in materials
which have high magnetocrystalline anisotropy, the following one-dimensional model is treated. A material
which is infinite in all directions has an infinite slab of finite width in which the anisotropy is 0. The coercive
force is calculated as a function of the slab width. It is found that for relatively small widths there is a con-
siderable reduction in the coercive force with respect to perfect material, but reduction saturates rapidly

so that it is never by more than a factor of 4.

L0
] I I

Propagation]

0.25

hY
Nucleation-,

AY
| | ] N I
0 0,2 0.5 Lo 2.0 5.0 10,0 20,0

dVK/A —

s Fic. 1. The nucleation field (dashed) and coercive force (full
—d d curve) in terms of the coercive force of perfect material, H1,/2K,
as functions of the defect size, d.

Earlier: E. Kondorski, On the nature of coercive force and irreversible changes in magnetlsatlon, Phys.
Z. Sowjetunion 11, 597 (1937)
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4. COERCIVITY IN MATERIALS — Nucleation and propagation

Use first-magnetization curves to determine the type of coercivity

First magnetization

Nucleation-limited Propagation-limited
Ex: Sm,Co,, Ex: SmCo;

Courtesy: D. Givord
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4. COERCIVITY IN MATERIALS — Nucleation and propagation (3/3

Depending on structural defects

1.0
Bf.. t) 0.5
1 “fﬂ.ﬂ
0.5
1.0 —
=300 -150 0 150 300
Magnetic field (Oe)
(b)

m‘m
gﬁn_zjﬂm-"“riﬂ Co || x NiO/3 nm Co 250

¢  3Inm o 4nm
[+ 6mnm ¢ [ o 10nm
200+ x 12nm o, < 2 15nm

o
O

¢ 25mm o -
&

+
+ -
+
-
3 ; 150 &
! 0
—~ 100 ~
Fig. 4. Magnetization versus reduced time (g for a GdFe 50

sample (k = 2000) and a TbCo one (k= 0), corresponding
domain structure observed by Kerr effect.

0 QFOSS-OVGF
T V100 10k IMI0OM 1 100 10K 1M 00M
Field sweep rate di/dt (Oefs)

M. Labrune et al,,
J. Magn. Magn. Mater. 80, 211 (1989) J. Camarero et al., PRB64, 172402 (2001)

Note also for fast propagation of domain walls: breakdown of propagation speed (Walker)

)
f f Olivier Fruchart - IWOS MASENA - Hanoi, Vietnam, Nov.2010 - p.46
Institut Néel, Grenoble, France

institut http://perso.neel.cnrs.fr/olivier.fruchart/slides/



4. COERCIVITY IN MATERIALS — From nanomagnetism to bulk materials

=

K —41.0
,j vis\x\\ Area of Brown's 'Paradox’
! —0.8
\:\:\ J
\ —0.6
Wy 172
Nk 3
1.0 \::\\\ ~0.4
zor-\\‘w_d; o
0.8 \""*..3_6'—0.2
-
206 ‘:: ) o
Z W\
=
0.4 \“\
\\-\
\ .
b9
Towards o :0;‘:}.,_7;- Towards
. S . .
superparamagnetism |, ] .. .. ] nhucleation-propagation
10 . .
0/0, and multidomain

F1G. 1. Particle size dependence of essentially spherical, ran-
domly oriented, iron particles. Calculated curve given by solid
line. Diameters D= g,. Data at 76°K obtained from electron micro-

scopic examination W, calculated from 7,/f, vs temperature O,
and from smoothed data of H;; vs D e.

E. F. Kneller & F. E. Luborsky,

Particle size dependence of coercivity and remanence of single-domain particles,
J. Appl. Phys. 34, 656 (1963)
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@ [2009] Magnetic field, Origin of magnetism, Spin and orbital magnetic moments, Crystal field, Magnetism of free
electrons - Paramagnetism etc.: JOHN MICHAEL COEY, TCD-Dublin, Ireland. [ Abstract pt.1 | pt.2 ][ Slides pt.1 | pt.2
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@ [2005] Basis and magnetic materials: K.H. MULLER [ Abstract | Slides (2.2MB) |
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Exchange and magnetic ordering

@ [2009] Exchange interactions: exchange, super-exchange, RKKY, Stoner ferromagnetism: TOMASZ DIETL, Warsaw, Poland. [ Abstract | Slides ]

@ [2009] Magnetic Order: different types, dimensionality effects, number of components (Ising, XY, Heisenberg): PETER DE CHATEL, Amsterdam, The Netherlands. [ Abstract | Slides
° ][2009] Magnetism at finite temperature: molecular field, phase transitions: CLAUDINE LACROIX, Institut Néel - Grenoble, France [ Slides ].

Magnetic anisotropy

@ [2009] Magnetic anisotropy and how it can be controlled: DIRK SANDER, MP/-Halle, Germany. [ Abstract | Slides |

Low-dimensional and surface magnetism

@ [2003] Low dimensional magnetism - experiments:_O. FRUCHART [ Abstract | Slides |

# [2003] Low dimensional magnetism : the role of the electronic structure: H. DREYSSE [ Content | Abstract |
@ [2003] From the atom to magnetic nanoparticles: E. BONET [ Abstract | Slides ]
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