

Fields, moments, units

Olivier FRUCHART

Univ. Grenoble Alpes / CEA / CNRS, SPINTEC, France

irig[®]

EMa The EUROPEAN
MAGNETISM
ASSOCIATION

Our interest in magnetism, and organizing ESM

Dear Institute,

Sent to esm@magnetism.eu on 12 Sep.2010

*I've always had a fascination with electromagnetism, and have pondered the theories of gravity. One thing I've come across in preliminary research is that **the current theories largely fail to include human element in, as if we're just baseless objects trapped here without a role in the ultimate reason.** (...)*

*Humans are magnets, too, as we possess iron. (...) If you take two magnets, they stick together when proper polars are placed near each other. What causes humans to act as the 2nd magnet in gravity is the iron found in humans. Earth, obviously the big magnet with the most iron, is able to control humans, the far smaller magnet with less iron. (...) **Ultimately there is one controlling magnet for the entire universe somewhere in space holding it all together, like Galileo said.***

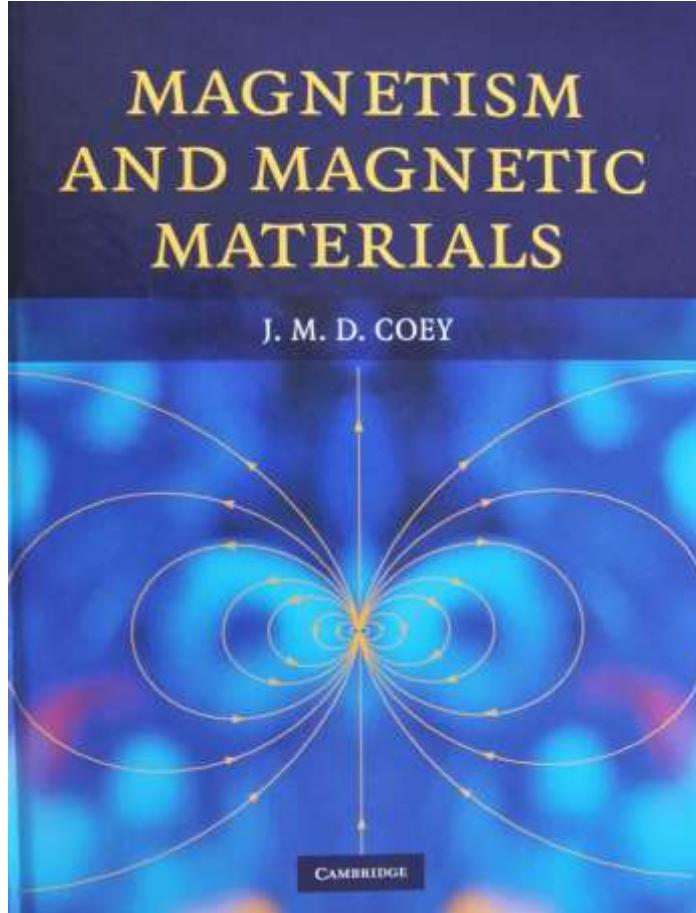
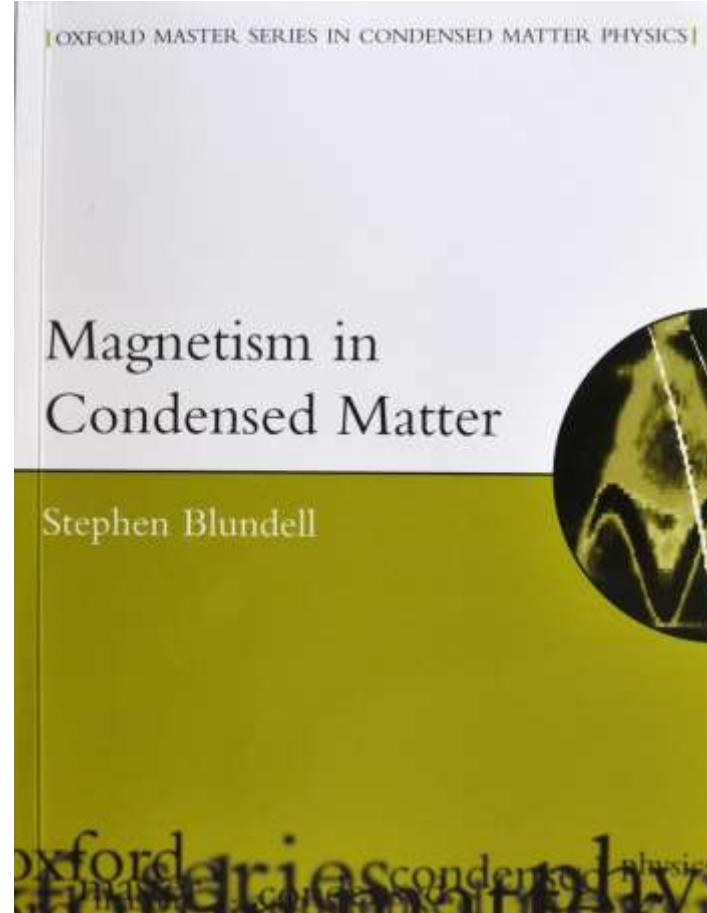
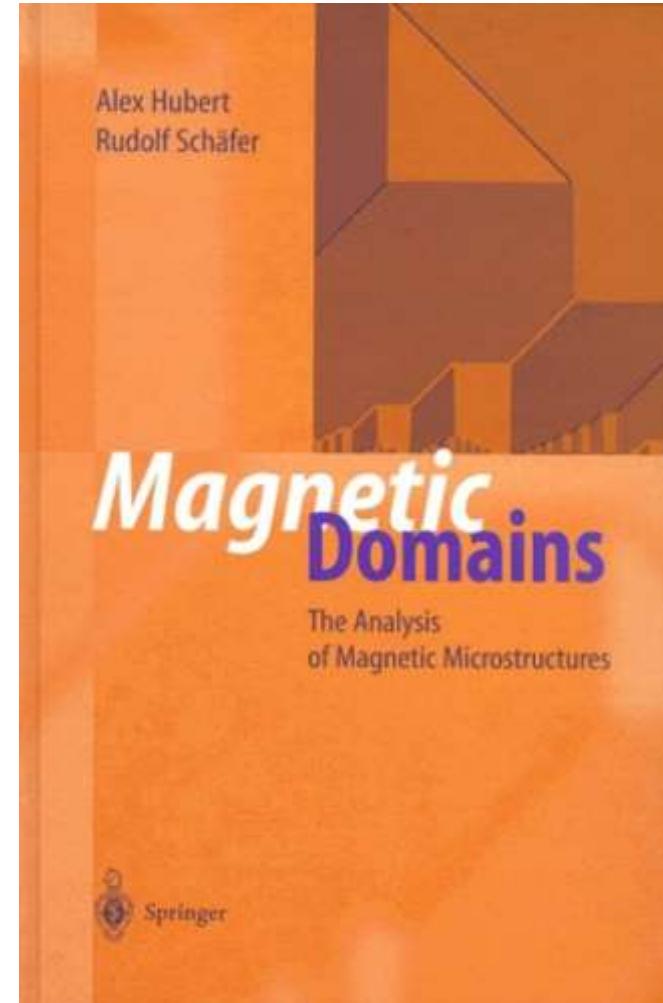
*Calculations of Earth's maximum gravitation pull could be made by **testing individual boosters on humans and converting the thrust needed into some kind of formula which returns Earth's magnetic energical pull.** (...) While it doesn't conclude why other things on Earth are in the same situation as us, it is also based on magnetism and humans have to have their own role in the matter.*

Further research into it needs to be done as these are very preliminary original thoughts.

Regards,

XXX YYY.

Understand the deep roots of magnetism



What is a quantity?

What is a unit ?

Quantity

- Example: speed $v = \delta \ell / \delta t$
- Dimension: $\text{dim}(v) = L \cdot T^{-1}$

Units

- Why?
 - Provide a measure
 - Universality: share with others
- Possible formalism:

$$X = X_\alpha \langle X \rangle_\alpha$$

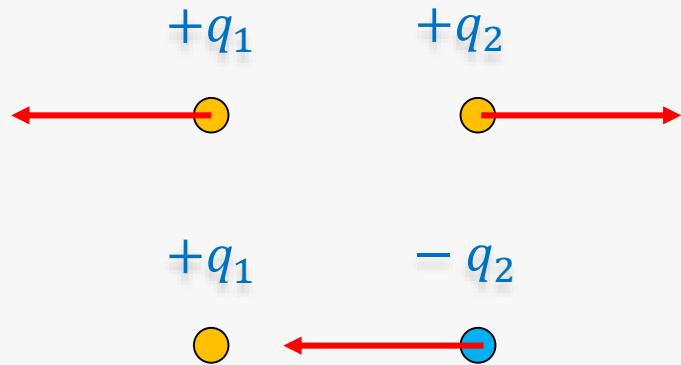
Quantity $\langle X \rangle_\alpha$ Reference quantity Measure

$$\langle L \rangle_{\text{SI}} = \text{meter} = 100 \langle L \rangle_{\text{cgs}}$$

$$L = 50 \langle L \rangle_{\text{SI}} = 5000 \langle L \rangle_{\text{cgs}}$$

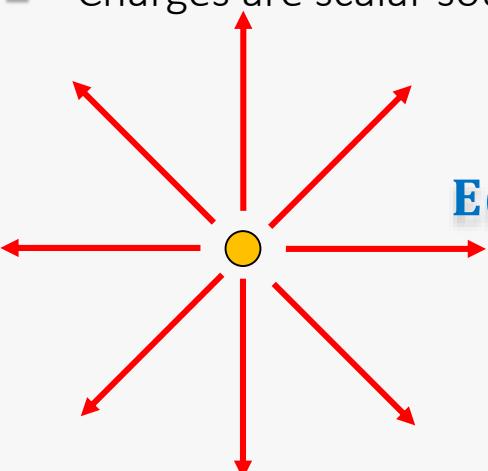
Facts: interaction between charges

$$\mathbf{F}_{1 \rightarrow 2} = \frac{q_1 q_2}{4\pi\epsilon_0 r_{12}^2} \mathbf{u}_{12}$$



Modeling by the Physicist

- Electric field $\mathbf{E}_{1 \rightarrow 2}$ $\mathbf{F}_{1 \rightarrow 2} = q_2 \mathbf{E}_{1 \rightarrow 2}$
- Charges are scalar sources of electric field



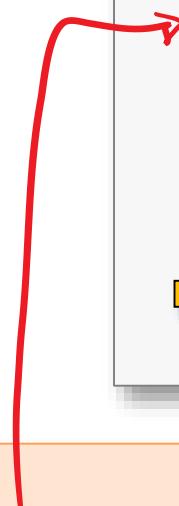
$$\mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\epsilon_0 r^2} \mathbf{u}$$

Microscopic level: Maxwell equation

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

$$\rho = \frac{\delta Q}{\delta \mathcal{V}}$$

Volume density
of electric charge



Macroscopic level: Gauss theorem

■ Ostogradski theorem

$$\iiint_{\mathcal{V}} \nabla \cdot \mathbf{E} d\mathcal{V} = \oint_{\partial\mathcal{V}} \mathbf{E} \cdot \mathbf{n} d\mathcal{S}$$

$$\Rightarrow \frac{Q}{\epsilon_0} = \iiint_{\mathcal{V}} \frac{\rho}{\epsilon_0} d\mathcal{V} = \oint_{\partial\mathcal{V}} \mathbf{E} \cdot \mathbf{n} d\mathcal{S}$$

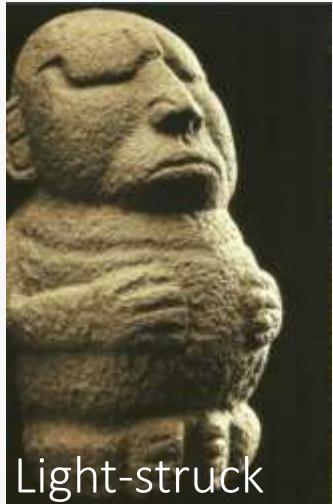
Link

$$\nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \dots = \frac{E_x(x + \delta x) - E_x(x)}{\delta x} + \dots$$

Century-old facts

- Magnetic materials (rocks)

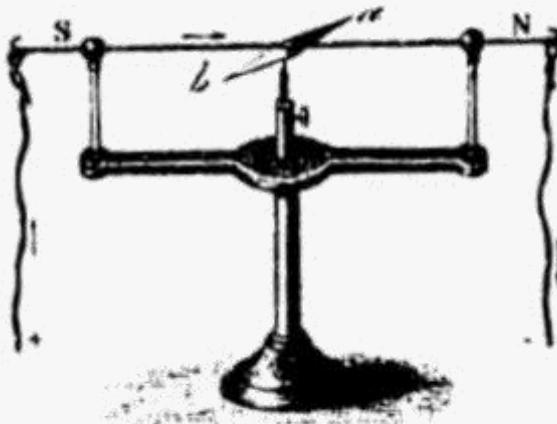
Magnetite



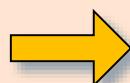
Light-struck

- Magnetic field of the earth

Oersted experiment in 1820



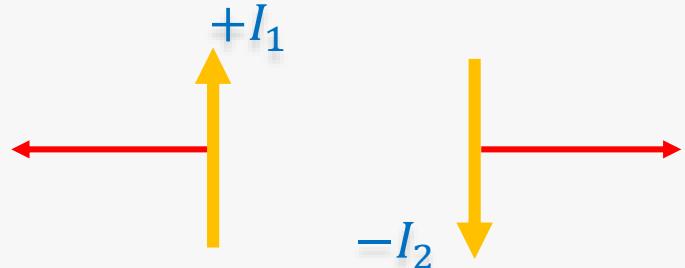
Hans-Christian Oersted,
1777-1851.



Birth of
electromagnetism

Facts: interaction between charge currents

$$\delta\mathbf{F}_{1 \rightarrow 2} = \mu_0 \frac{I_1 I_2 [\delta\mathbf{e}_2 \times (\delta\mathbf{e}_1 \times \mathbf{u}_{12})]}{4\pi r_{12}^2}$$

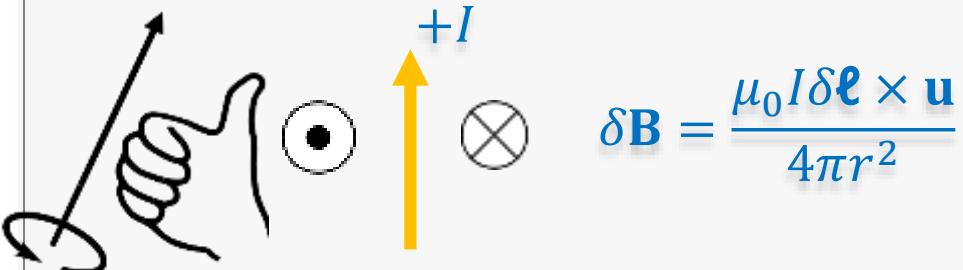


Note: former definition of the Ampère:

The force between two infinitely wires 1m apart with current 1A is 2×10^{-7} N/m

Modeling by the Physicist

- Magnetic induction field: Biot & Savart law



- Retrieve the force (Laplace)

$$\delta\mathbf{F}_2 = I_2 \delta\mathbf{e} \times \mathbf{B}(\mathbf{r}_2)$$

$$\rightarrow \mathbf{F} = q \mathbf{v} \times \mathbf{B}$$

- Magnetic induction field defined through Lorentz Force

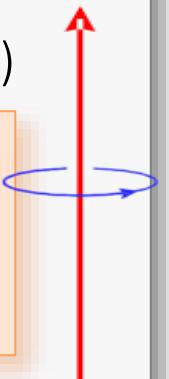
Microscopic level: Maxwell equation

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

\mathbf{j} : Volume density of current (A/m^2)

■ \mathbf{j} is the vectorial source of curl of \mathbf{B}

Unit for \mathbf{B} : tesla (T)



Macroscopic level: Ampere theorem

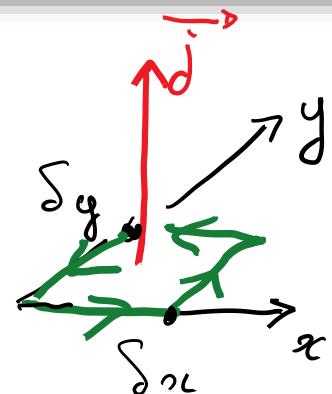
■ Stokes theorem

$$\iint_S (\nabla \times \mathbf{B}) \cdot \mathbf{n} \, dS = \oint_{\partial S} \mathbf{B} \cdot d\ell$$

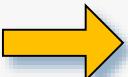
$$\rightarrow I = \mu_0 \iint_S (\mathbf{j} \cdot \mathbf{n}) \, dS = \oint_{\partial S} \mathbf{B} \cdot d\ell$$

Link

$$\nabla \times \mathbf{B} = \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right) = \left(\frac{B_y(x + \delta x) - B_y(x)}{\delta x} - \frac{B_x(y + \delta y) - B_x(y)}{\delta y} \right)$$



$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

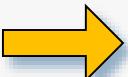


Gauss theorem

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Faraday law of induction

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$



Ampère theorem

$$\nabla \cdot \mathbf{B} = 0$$

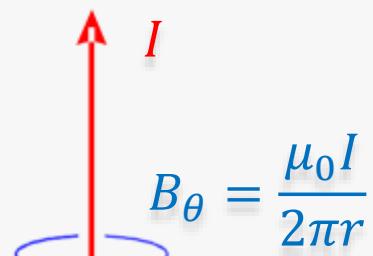
B is divergence free
(no magnetic poles)

Biot and Savart

$$\delta\mathbf{B} = \frac{\mu_0 I \delta\ell \times \mathbf{u}}{4\pi r^2}$$

Note: $1/r^2$ decay

Ampere theorem and Ørsted field

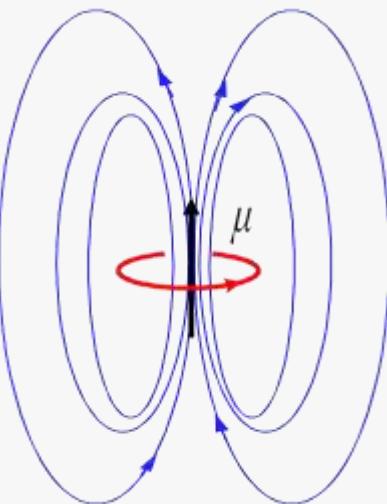


$$B_\theta = \frac{\mu_0 I}{2\pi r}$$

Note: $1/r$ decay

Integrate

The magnetic point dipole



Simple loop

$$\mu = IS \quad \text{Unit: A} \cdot \text{m}^2$$

General definition

$$\mu = \frac{1}{2} \iiint_V \mathbf{r} \times \mathbf{j}(\mathbf{r}) dV$$

Derive

$$\mathbf{B} = \frac{\mu_0}{4\pi r^3} \left[\frac{3}{r^2} (\mu \cdot \mathbf{r}) \mathbf{r} - \mu \right]$$

Note: $1/r^3$ decay

$$\mathbf{B} = \frac{\mu_0}{4\pi r^3} (2\mu \cos \theta \mathbf{u}_r + \mu \sin \theta \mathbf{u}_\theta)$$

Energy

$$\mathcal{E} = -\mu \cdot \mathbf{B} \quad \text{Zeeman energy} \quad (J)$$

Demonstration

- ❑ Work to compensate Lenz law during rise of \mathbf{B}
- ❑ Integrate torque from Laplace force while flipping dipole in \mathbf{B}

Force

$$\mathbf{F} = \mu \cdot (\overline{\nabla} \mathbf{B})$$

- ❑ Valid only for fixed dipole
- ❑ No force in uniform magnetic induction field

Torque

$$\Gamma = \oint \mathbf{r} \times I(d\ell \times \mathbf{B}) = \mu \times \mathbf{B}$$

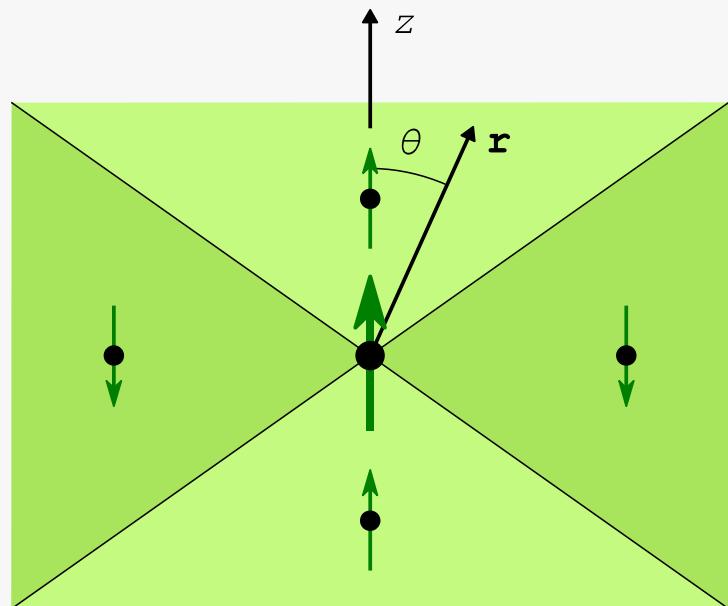
- ❑ Inducing precession of dipole around the field
- ❑ It is energy-conservative, as expected from Laplace (Lorentz) force

Two interacting magnetic point dipoles

Energy

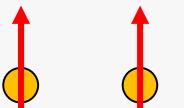
$$\mathcal{E} = -\frac{\mu_0}{4\pi r^3} \left[\frac{3}{r^2} (\boldsymbol{\mu}_1 \cdot \mathbf{r})(\boldsymbol{\mu}_2 \cdot \mathbf{r}) - \boldsymbol{\mu}_1 \cdot \boldsymbol{\mu}_2 \right]$$

- The dipole-dipole interaction is anisotropic

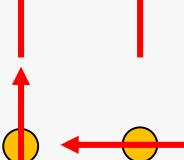


Examples

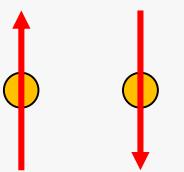
$$\mathcal{E} = +2 \frac{\mu_0 \mu_1 \mu_2}{4\pi r^3}$$



$$\mathcal{E} = + \frac{\mu_0 \mu_1 \mu_2}{4\pi r^3}$$



$$\mathcal{E} = 0$$



$$\mathcal{E} = - \frac{\mu_0 \mu_1 \mu_2}{4\pi r^3}$$

$$\mathcal{E} = -2 \frac{\mu_0 \mu_1 \mu_2}{4\pi r^3}$$

Definition

- Volume density of magnetic point dipoles

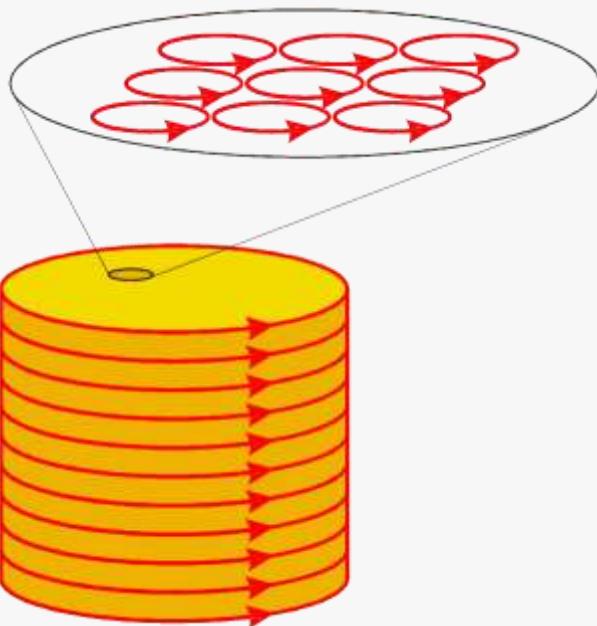
$$\mathbf{M} = \frac{\delta \mathbf{\mu}}{\delta \mathcal{V}} \quad \text{A/m}$$

- Total magnetic moment of a body

$$\mathcal{M} = \int_{\mathcal{V}} \mathbf{M} d\mathcal{V} \quad \text{A} \cdot \text{m}^2$$

- Applies to: ferromagnets, paramagnets, diamagnets etc.
- Must be defined at a length scale much larger than atoms
- Is the basis for the micromagnetic theory

Equivalence with surface currents



- Name: Amperian description of magnetism
- Surface current equals magnetization A/m

Back to Maxwell equations

- Disregard fast time dependence: magnetostatics

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

- Consider separately real charge current, \mathbf{j}_c from fictitious currents of magnetic dipoles \mathbf{j}_m

$$\nabla \times \mathbf{B} = \mu_0 (\mathbf{j}_c + \mathbf{j}_m)$$

- One can show: $\nabla \times \mathbf{M} = \mathbf{j}_m$ A/m²
 $\mathbf{M} \times \mathbf{n} = \mathbf{j}_{m,s}$ A/m

- Outside matter, \mathbf{B} and $\mu_0 \mathbf{H}$ coincide and have exactly the same meaning.

The magnetic field \mathbf{H}

- One has:

$$\nabla \times \left(\frac{\mathbf{B}}{\mu_0} - \mathbf{M} \right) = \mathbf{j}_c$$

- By definition: $\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$ A/m

$$\nabla \times \mathbf{H} = \mathbf{j}_c$$

B versus H : definition of the system

- \mathbf{M} : local (infinitesimal) part in $\delta\mathcal{V}$ of the system defined when considering a magnetic material
- \mathbf{H} : The remaining of \mathbf{B} coming from outside $\delta\mathcal{V}$, liable to interact with the system

The dipolar field \mathbf{H}_d

- By definition: the contribution to \mathbf{H} not related to free currents (possible to split as Maxwell equations are linear)

$$\nabla \times \mathbf{H}_d = 0 \quad \rightarrow \quad \mathbf{H}_d = -\nabla \phi_d$$

$$\mathbf{H} = \mathbf{H}_d + \mathbf{H}_{app}$$

External to magnetic body

Analogy with electrostatics

$$\nabla \times \mathbf{E} = 0 \quad \rightarrow \quad \mathbf{E} = -\nabla \phi$$

Derive the dipolar field

Maxwell equation $\nabla \cdot \mathbf{B} = 0 \rightarrow \nabla \cdot \mathbf{H}_d = -\nabla \cdot \mathbf{M}$

$$\rightarrow \mathbf{H}_d(\mathbf{r}) = -M_s \iiint_{V'} \frac{[\nabla \cdot \mathbf{m}(\mathbf{r}')] (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} dV'$$

To lift the singularity that may arise at boundaries, a volume integration around the boundaries yields:

$$\mathbf{H}_d(\mathbf{r}) = \iiint \frac{\rho(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} dV' + \iint \frac{\sigma(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} dS'$$

$$\rho(\mathbf{r}) = -M_s \nabla \cdot \mathbf{m}(\mathbf{r})$$

→ volume density of magnetic charges

$$\sigma(\mathbf{r}) = M_s \mathbf{m}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})$$

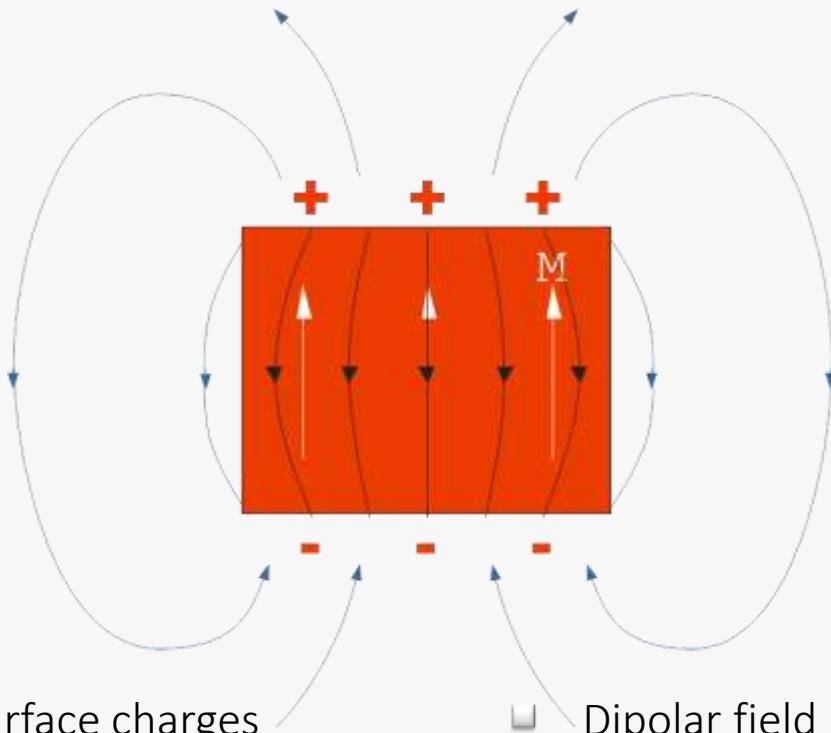
→ surface density of magnetic charges

Vocabulary

- ❑ Generic names
 - Magnetostatic field
 - Dipolar field
- ❑ Inside material
 - Demagnetizing field
- ❑ Outside material
 - Stray field

Example

Permanent magnet (uniformly-magnetized)

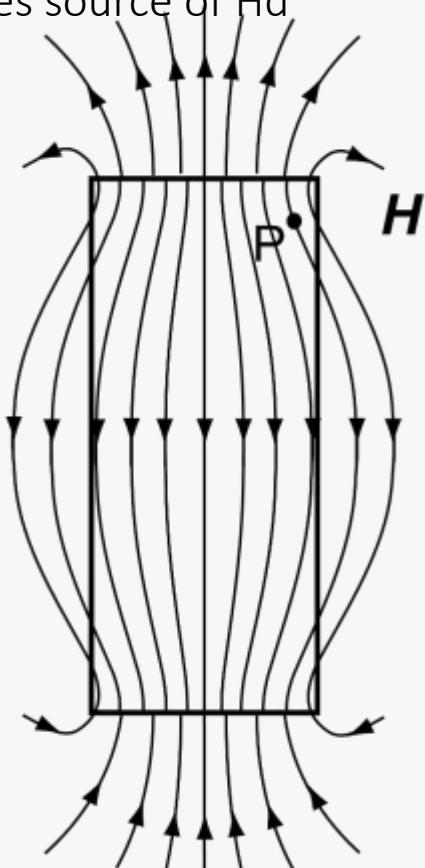


$$\sigma(\mathbf{r}) = M_s \mathbf{m}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})$$

$$\mathbf{H}_d(\mathbf{r}) = \iint \frac{\sigma(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} dS'$$

Coulombian

- Pseudo-charges source of H_d



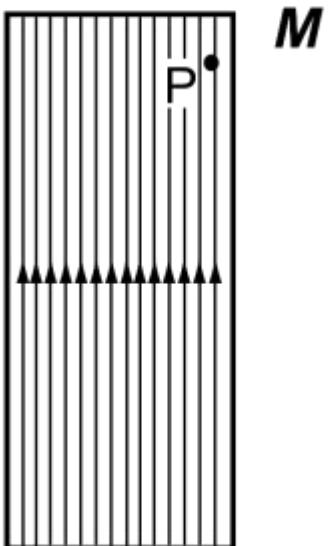
$$\nabla \times \mathbf{H} = 0$$

- No closed lines

$$\Delta H_{\parallel} = 0$$

$$\Delta \mathbf{H} \cdot \mathbf{n} = \sigma$$

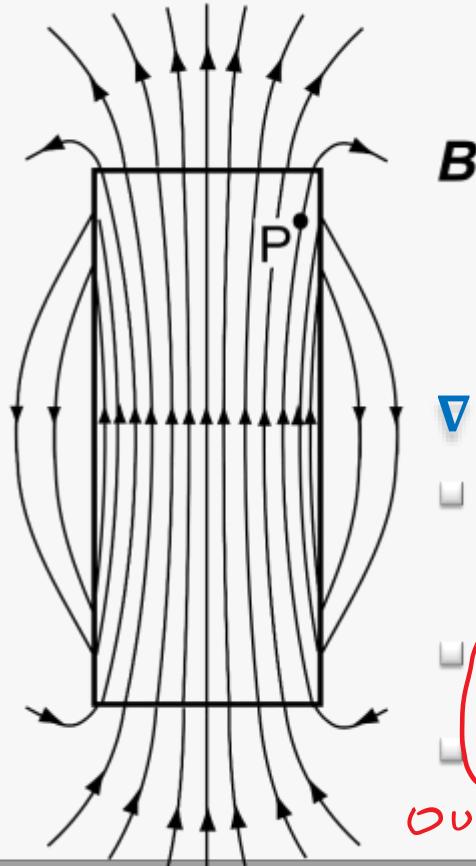
out - in



From: M. Coey's book

Amperian

- Fictitious currents source of B



$$\nabla \cdot \mathbf{B} = 0$$

- No magnetic monopole

$$\Delta B_{\perp} = 0$$

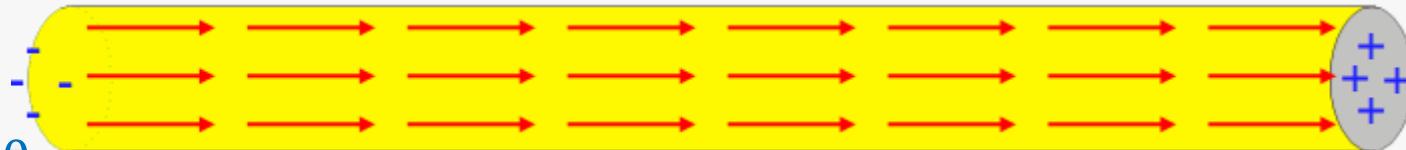
$$\Delta \mathbf{B} = \mu_0 \mathbf{j} \times \mathbf{n}$$

out - in

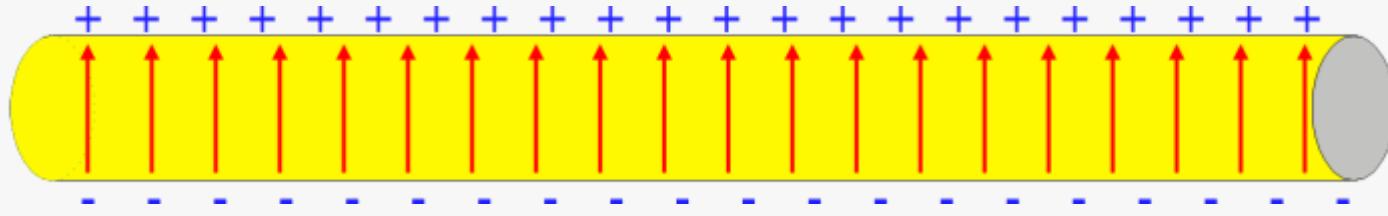
Examples of magnetic charges

The long cylinder

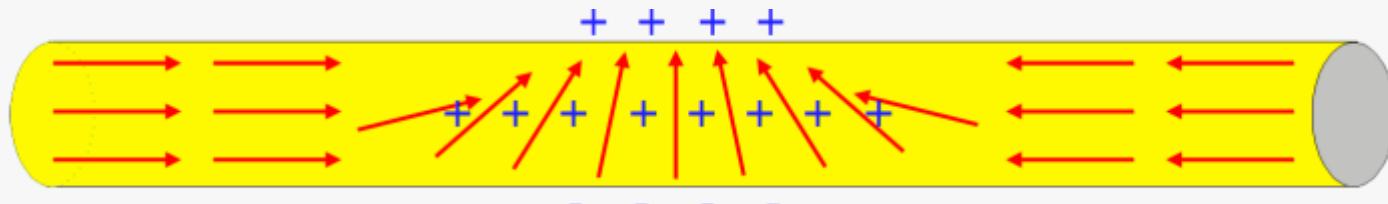
- ◻ Note for infinite cylinder:
no charge $\mathcal{E}_d = 0$



- ◻ Charges on side surfaces



- ◻ Surface and volume charges



Take-away message

- ◻ Dipolar energy favors alignment of magnetization with longest direction of sample

Dipolar energy

- Zeeman energy of microscopic volume

$$\delta\mathcal{E}_z = -\mu_0 \mathbf{M} \cdot \mathbf{H}_{\text{ext}}$$
- Elementary volume of a macroscopic system creating its own dipolar field

$$E_d = \delta\mathcal{E}_d / \delta\mathcal{V} = -\frac{1}{2} \mu_0 \mathbf{M} \cdot \mathbf{H}_d$$

(mutual energy)
- Total energy of macroscopic body

$$\mathcal{E}_d = -\frac{1}{2} \mu_0 \iiint_V \mathbf{M} \cdot \mathbf{H}_d \, d\mathcal{V}$$

$$\mathcal{E}_d = \frac{1}{2} \mu_0 \iiint_V \mathbf{H}_d^2 \, d\mathcal{V}$$

- Always positive. Zero means minimum

Size considerations

$$H_d(\mathbf{r}) = \text{Volume} + \iint \frac{\sigma(\mathbf{r}') (\mathbf{r} - \mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|^3} d\mathcal{S}'$$

- Unchanged if all lengths are scaled: homothetic. Check that the following is a solid angle:

$$d\Omega = \frac{(\mathbf{r} - \mathbf{r}') d\mathcal{S}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

- H_d does not depend on the size of the body
- Neither does the volume density of energy
- Said to be a long-range interaction

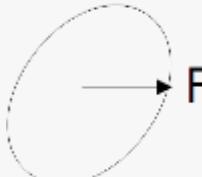
Range of dipolar interactions in low dimensionality

Range

- Upper bound of dipolar field

$$\|\mathbf{H}_d(\mathbf{r})\| \leq M_s t \int \frac{2\pi r}{r^3} dr$$

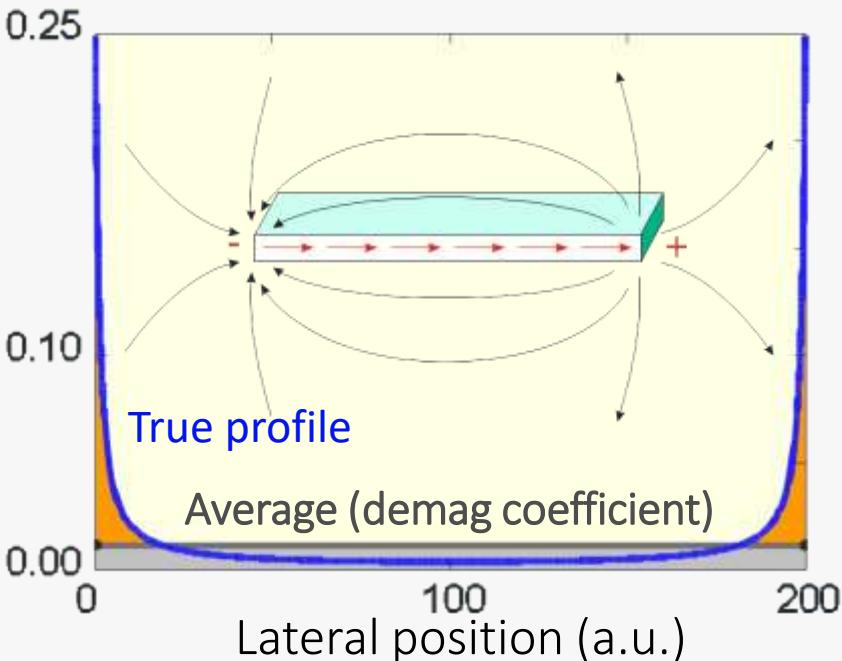
Integration
 \mathbf{H}_d for dipole



→ $\|\mathbf{H}_d(\mathbf{R})\| \leq \text{Cste} + \mathcal{O}(1/R)$

Non-homogeneity

- Example: flat strip with aspect ratio 0.0125



- Dipolar fields are short-ranged in low dimensionality
- Dipolar fields are highly non-homogeneous in large aspect ratio systems
- Consequences: non-uniform magnetization switching, excitation modes etc.

Dipolar energy for uniform magnetization

$$\mathbf{M}(\mathbf{r}) = \mathbf{M} = M_s(m_x \hat{\mathbf{x}} + m_y \hat{\mathbf{y}} + m_z \hat{\mathbf{z}})$$

■ No volume charges: $\rho(\mathbf{r}) = -M_s \nabla \cdot \mathbf{m}(\mathbf{r}) = 0$

■ Dipolar field: $\mathbf{H}_d(\mathbf{r}) = \iint_{\partial V} \frac{[\mathbf{M}(\mathbf{r}') \cdot \mathbf{n}(\mathbf{r}')] (\mathbf{r} - \mathbf{r}')} {4\pi |\mathbf{r} - \mathbf{r}'|^3} dS' = M_s m_i \iint_{\partial V} \frac{n_i(\mathbf{r}') (\mathbf{r} - \mathbf{r}')} {4\pi |\mathbf{r} - \mathbf{r}'|^3} dS'$

■ Dipolar energy:

$$\mathcal{E}_d = -\frac{1}{2} \mu_0 \iiint_V \mathbf{M}(\mathbf{r}) \cdot \mathbf{H}_d(\mathbf{r}) dV = -\frac{1}{2} \mu_0 M_s^2 m_i \iiint_V dV \iint_{\partial V} \frac{n_i(\mathbf{r}') \mathbf{m} \cdot (\mathbf{r} - \mathbf{r}')} {4\pi |\mathbf{r} - \mathbf{r}'|^3} dS'$$

$$\mathcal{E}_d = -K_d m_i m_j \iiint_V dV \iint_{\partial V} \frac{n_i(\mathbf{r}') (r_j - r'_j)} {4\pi |\mathbf{r} - \mathbf{r}'|^3} dS'$$

Implicit \sum_j

See more detailed approach: M. Beleggia et al., JMMM 263, L1-9 (2003)

Implicit \sum_i
 $i = x, y, z$

$$\langle \mathbf{H}_d(\mathbf{r}) \rangle = -M_s \bar{\mathbf{N}} \cdot \mathbf{m}$$

$$\mathcal{E}_d = K_d V \mathbf{m} \cdot \bar{\mathbf{N}} \cdot \mathbf{m}$$

For any shape of body

$$\langle \mathbf{H}_d(\mathbf{r}) \rangle = -M_s \bar{\mathbf{N}} \cdot \mathbf{m}$$

$$\mathcal{E}_d = K_d V \mathbf{m} \cdot \bar{\mathbf{N}} \cdot \mathbf{m}$$

Dipolar anisotropy is always of second order

- $\bar{\mathbf{N}}$ demagnetizing tensor. Always positive, and can be diagonalized. $N_x + N_y + N_z = 1$
- $$\mathcal{E}_d = K_d V (N_x m_x^2 + N_y m_y^2 + N_z m_z^2)$$

- Along main directions

$$\langle H_{d,i}(\mathbf{r}) \rangle = -N_i M_s$$

Hypothesis uniform \mathbf{M} may be too strong
Remember: dipolar field is NOT uniform

For ellipsoids etc.

- Condition: boundary is a polynomial of the coordinates, with degree at most two

Slabs (thin films), cylinders, ellipsoids

$$z^2 = \left(\frac{t}{2}\right)^2 \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$

$$\mathbf{H}_d = -M_s \bar{\mathbf{N}} \cdot \mathbf{m}$$

$$\mathcal{E}_d = K_d V \mathbf{m} \cdot \bar{\mathbf{N}} \cdot \mathbf{m}$$

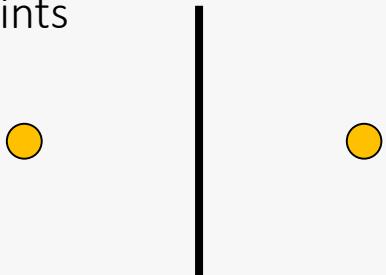
- Along main directions

$$H_{d,i} = -N_i M_s$$

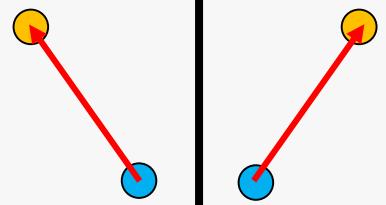
\mathbf{M} and \mathbf{H} may not be colinear along non-main directions

Reminder about plane symmetry

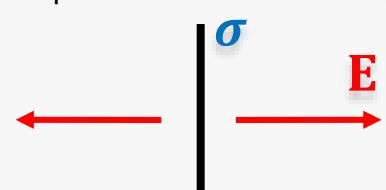
- Points



- Vectors



- Example: electric field $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$



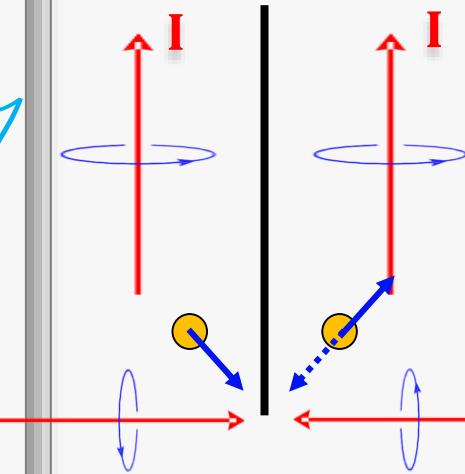
Magnetic fields are pseudo-vectors

- Curl is a chiral operator

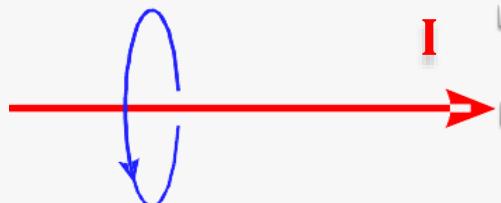
$$\delta \mathbf{B} = \frac{\mu_0 I \delta \ell \times \mathbf{u}_{12}}{4\pi r^2}$$

Annotations: "Antisymmetry" in blue, "Symmetry" in red, and "Antisymmetry" in blue.

\mathbf{B} is antisymmetric



What use? Example: Ampere theorem and Oersted field



- Symmetry of \mathbf{I} with plane containing \mathbf{I}

- Antisymmetry of \mathbf{B} : is azimuthal ℓ

$$B_\theta = \frac{\mu_0 I}{2\pi r}$$

Time inversion symmetry of Maxwell equations

- What happens with operation $t \rightarrow -t$

Unchanged $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$ $\rightarrow -B$

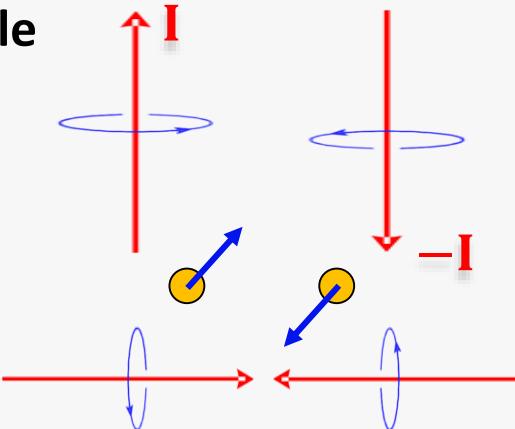
Unchanged $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\rightarrow -t$

Inversed $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$
 $-B \leftarrow$ $\leftarrow -\mathbf{j}$ $\rightarrow -t$

Inversed $\nabla \cdot \mathbf{B} = 0$ $\rightarrow -B$

- Maxwell equations remains valid
- Solutions must comply with time-reversal symmetry

Example



What use? Magneto-crystalline anisotropy

$$\begin{aligned}
 E(\theta) = & K_{10} \cos \theta + K_{01} \sin \theta + K_{11} \cos \theta \sin \theta + \\
 & K_{20} \cos^2 \theta + K_{02} \sin^2 \theta + K_{30} \cos^3 \theta + K_{03} \sin^3 \theta + \\
 & K_{21} \cos^2 \theta \sin \theta + K_{12} \cos \theta \sin^2 \theta + \dots
 \end{aligned}$$

- Odd terms are forbidden

SI system		cgs-Gauss	
Definitions			
Meter m		Centimeter cm	
Kilogram kg		Gram g	
Second s		Second s	
Ampere A		Ab-Ampere ab-A = 10A	
$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$		$\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}$	
$\mu_0 = 4\pi \times 10^{-7}$ SI		$\mu_0 = 4\pi$	

Conversions

Field	H	1 A/m	\longleftrightarrow	$4\pi \times 10^{-3}$ Oe (Oersted)
Moment	μ	1 A.m ²	\longleftrightarrow	10^3 emu
Magnetization	M	1 A/m	\longleftrightarrow	10^{-3} emu/cm ³
Induction	B	1 T	\longleftrightarrow	10^4 G (Gauss)
Susceptibility	$\chi = M/H$	1	\longleftrightarrow	$1/4\pi$

Problems with cgs-Gauss

- The quantity for charge current is missing
- No check for homogeneity
- Mix of units in spintronics
- Inconsistent definition of H
- Dimensionless quantities are effected: demag factors, susceptibility etc.

More in the practical on units

To be measured

- ❑ Magnetic permeability of vacuum

$$\mu_0 \neq 4\pi \times 10^{-7} \text{ S.I.}$$

$$\mu_0 = 4\pi[1 + 2.0(2.3) \cdot 10^{-10}] \times 10^{-7} \text{ S.I.}$$

Define quantities

- ❑ Times
- ❑ Length
- ❑ Mass
- ❑ Electric charge

Fixed values

- ❑ Speed of light -> Define meter
- ❑ Planck constant -> Defines kg
- ❑ Charge of the electron

Thank you for your attention !

www.spintec.fr |

email: olivier.fruchart@cea.fr

irig[®]

